首页> 外文OA文献 >Control of Discrete Event Systems by Means of Discrete Optimization and Disjunctive Colored PNs: Application to Manufacturing Facilities
【2h】

Control of Discrete Event Systems by Means of Discrete Optimization and Disjunctive Colored PNs: Application to Manufacturing Facilities

机译:通过离散优化和分解彩色PNS控制离散事件系统:制造设施的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Artificial intelligence methodologies, as the core of discrete control and decision support systems, have been extensively applied in the industrial production sector. The resulting tools produce excellent results in certain cases; however, the NP-hard nature of many discrete control or decision making problems in the manufacturing area may require unaffordable computational resources, constrained by the limited available time required to obtain a solution. With the purpose of improving the efficiency of a control methodology for discrete systems, based on a simulation-based optimization and the Petri net (PN) model of the real discrete event dynamic system (DEDS), this paper presents a strategy, where a transformation applied to the model allows removing the redundant information to obtain a smaller model containing the same useful information. As a result, faster discrete optimizations can be implemented. This methodology is based on the use of a formalism belonging to the paradigm of the PN for describing DEDS, the disjunctive colored PN. Furthermore, the metaheuristic of genetic algorithms is applied to the search of the best solutions in the solution space. As an illustration of the methodology proposal, its performance is compared with the classic approach on a case study, obtaining faster the optimal solution.
机译:人工智能方法,如离散控制和决策支持系统的核心,已被广泛用于工业生产部门的应用。产生的生产工具在某些情况下优异的成绩;然而,许多离散控制或决策问题在制造区中的NP-硬性质可能需要负担不起的计算资源,通过有限的可用时间约束要求以获得溶液。为了改善离散系统控制方法的效率为目的的基础上,基于仿真的优化和Petri网(PN)真正的离散事件动态系统的模型(DEDS),本文提出了一种策略,其中一个转变施加到模型允许去除冗余信息以获得含有相同的有用信息的小模型。其结果是,更快的离散优化可以实现。这种方法是基于使用属于PN的范例描述DEDS,有色PN析取一个形式主义。此外,遗传算法的元启发式被施加到搜索在解空间的最佳解决方案。作为方法论建议的说明,其性能与案例研究的经典方法相比,获得更快的最佳解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号