首页> 外文OA文献 >Synthetic Feedback Loop for Increasing Microbial Biofuel Production Using a Biosensor
【2h】

Synthetic Feedback Loop for Increasing Microbial Biofuel Production Using a Biosensor

机译:使用生物传感器增加微生物生物燃料生产的合成反馈回路

摘要

Current biofuel production methods use engineered bacteria to break down cellulose and convert it to biofuel. However, this production is limited by the toxicity of the biofuel to the organism that is producing it. Therefore, to increase yields, microbial biofuel tolerance must be increased. Tolerant strains of bacteria use a wide range of mechanisms to counteract the detrimental effects of toxic solvents. Previous research demonstrates that efflux pumps are effective at increasing tolerance to various biofuels. However, when overexpressed, efflux pumps burden cells, which hinders growth and slows biofuel production. Therefore, the toxicity of the biofuel must be balanced with the toxicity of pump overexpression. We have developed a mathematical model and experimentally characterized parts for a synthetic feedback loop to control efflux pump expression so that it is proportional to the concentration of biofuel present. In this way, the biofuel production rate will be maximal when the concentration of biofuel is low because the cell does not expend energy expressing efflux pumps when they are not needed. Additionally, the microbe is able to adapt to toxic conditions by triggering the expression of efflux pumps, which allows it to continue biofuel production. The mathematical model shows that this feedback loop increases biofuel production relative to a model that expresses efflux pumps at a constant level by delaying pump expression until it is needed. This result is more pronounced when there is variability in biofuel production rates because the system can use feedback to adjust to the actual production rate. To complement the mathematical model, we also constructed a whole cell biosensor that responds to biofuel by expressing a fluorescent reporter protein from a promoter under the control of the sensor.
机译:当前的生物燃料生产方法使用工程菌来分解纤维素并将其转化为生物燃料。但是,这种生产受到生物燃料对生产它的生物的毒性的限制。因此,为了增加产量,必须提高微生物对生物燃料的耐受性。细菌的耐受菌株使用多种机制来抵消有毒溶剂的有害作用。先前的研究表明,外排泵可有效提高对各种生物燃料的耐受性。但是,当过表达时,外排泵会给细胞增加负担,这会阻碍细胞生长并减慢生物燃料的生产。因此,生物燃料的毒性必须与泵过表达的毒性相平衡。我们已经开发了一个数学模型,并对合成反馈回路进行了实验表征,以控制外排泵的表达,使其与存在的生物燃料浓度成正比。以此方式,当生物燃料的浓度低时,生物燃料的生产率将最大,因为当不需要它们时,细胞不会消耗表示外排泵的能量。此外,微生物能够通过触发外排泵的表达来适应有毒条件,从而使其能够继续生物燃料的生产。数学模型表明,该反馈回路相对于通过延迟泵的表达直到需要时以恒定水平表示外排泵的模型而言,增加了生物燃料的产量。当生物燃料生产率存在差异时,此结果会更加明显,因为系统可以使用反馈来调整实际生产率。为了补充数学模型,我们还构建了一个全细胞生物传感器,该传感器通过在传感器的控制下从启动子表达荧光报告蛋白来响应生物燃料。

著录项

  • 作者

    Harrison Mary;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号