首页> 外文OA文献 >Numerical Simulations of Reacting Flow in an Inductively Coupled Plasma Torch
【2h】

Numerical Simulations of Reacting Flow in an Inductively Coupled Plasma Torch

机译:电感耦合等离子体炬中反应流的数值模拟

摘要

In the design of a thermal protection system for atmospheric entry, aerothermal heating presents a major impediment to efficient heat shield design. Recombination of atomic species in the boundary layer results in highly exothermic surface-catalyzed recombination reactions and an increase in the heat flux experienced at the surface. The degree to which these reactions increase the surface heat flux is partly a function of the heat shield material. Characterization of the catalytic behavior of these materials takes place in experimental facilities, however there is a dearth of detailed computational models for the fluid dynamic and chemical behavior of such facilities.A numerical model coupling finite rate chemical kinetics and high temperature thermodynamic and transport properties with a computational fluid dynamics flow solver has been developed to model the chemically reacting flow in the inductively coupled plasma torch facility at the University of Vermont. Simulations were performed modeling the plasma jet for hybrid oxygen-argon and nitrogen plasmas in order to validate the models developed in this work by comparison to experimentally-obtained data for temperature and relative species concentrations in the boundary layer above test articles. Surface boundary conditions for wall temperature and catalytic efficiency were utilized to represent the different test article materials used in the experimental facility. Good agreement between measured and computed data is observed. In addition, a code-to-code validation exercise was performed benchmarking the performance of the models developed in this dissertation by comparison to previously published results. Results obtained show good agreement for boundary layer temperature and species concentrations despite significant differences in the codes. Lastly, a series of simulations were performed investigating the effects of recombination reaction rates and pressure on the composition of a nitrogen plasma jet in chemical nonequilibrium in order to better understand the composition at the boundary layer edge above a test article. Results from this study suggest that, for typical test conditions, the boundary layer edge will be in a state of chemical nonequilibrium, leading to a nonequilibrium condition across the entire boundary layer for test article materials with high catalytic efficiencies.
机译:在用于大气进入的热保护系统的设计中,空气热加热对有效的热屏蔽设计提出了主要障碍。边界层中原子种类的重新结合导致高度放热的表面催化的重组反应,并使表面所经历的热通量增加。这些反应增加表面热通量的程度部分是隔热材料的函数。这些材料的催化行为的表征是在实验设备中进行的,但是缺乏此类设备的流体动力学和化学行为的详细计算模型。一个数值模型将有限速率的化学动力学,高温热力学和传输特性与已经开发了一种计算流体动力学流动求解器,以对佛蒙特大学感应耦合等离子体炬炬设备中的化学反应流进行建模。为了对混合的氧-氩和氮等离子体的等离子体射流进行建模,以便通过与实验获得的测试物品上方边界层中温度和相对物种浓度的数据进行比较,来验证在这项工作中开发的模型,从而进行仿真。利用壁温和催化效率的表面边界条件来代表实验设备中使用的不同测试物品材料。观察到测量数据和计算数据之间的良好一致性。另外,通过与以前发布的结果进行比较,进行了代码到代码的验证练习,以基准测试本文开发的模型的性能。尽管代码存在显着差异,但获得的结果显示出边界层温度和物种浓度的良好一致性。最后,进行了一系列模拟研究,研究了化学非平衡条件下重组反应速率和压力对氮等离子体射流组成的影响,以便更好地了解测试物品上方边界层边缘的组成。这项研究的结果表明,对于典型的测试条件,边界层边缘将处于化学不平衡状态,从而导致具有高催化效率的测试物品材料在整个边界层上处于不平衡状态。

著录项

  • 作者

    Dougherty Maximilian;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号