首页> 外文OA文献 >Investigation of thermopower waves based energy sources
【2h】

Investigation of thermopower waves based energy sources

机译:基于热电波的能源研究

摘要

Miniaturisation of energy sources is critical for the development of the next generation electronic devices. However, reduction in dimensions of none of the commonly used energy generation technologies including batteries, fuel cells, heat engines and supercapacitors have resulted in efficient and reliable energy sources with high specific powers (power-to-mass ratio). Recently, the new concept of energy generation based on thermopower waves has shown promise for miniaturization. In such sources, exothermic chemical reactions of a reactive fuel are coupled to charge carriers of a thermoelectric (TE) material in its affinity, resulting in an intense thermal wave that self-propagates along the surface of the TE materials. This wave simultaneously entrains charge carriers, resulting in a large current. If the TE material also has a high Seebeck coefficient, a large output voltage and subsequently large specific power output are obtained. As the thermal wave results in a power output, it is called a thermopower wave. In the first stage of the PhD research, the author demonstrated thermopower wave systems based on thin films of Bi 2 Te 3 . Bi 2 Te 3 was implemented due to its high S (~ –200 μV/K) and σ (10 5 S/m). As Bi 2 Te 3 exhibits a low κ , the author devised a novel strategy by placing it on thermally conductive alumina (Al 2 O 3 ) substrate to compensate for this deficiency. The Bi 2 Te 3 based thermopower wave sources generated voltages and oscillations higher (at least 150 %) than the previously reported multi-walled carbon nanotube (MWNT) based thermopower wave sources, while maintaining a high specific power in the order of 1 kW/kg. In the second stage, the author implemented a novel combination of p-type Sb 2 Te 3 and n-type Bi 2 Te 3 as the core TE materials with complimentary semiconducting properties, to show the generation of voltage signals with alternating polarities. In the third stage, the author implemented zinc oxide (ZnO), which is a TE transition metal oxide (TMO), for the first time as the core material in thermopower wave sources. It was shown that both S (~ –500 μV/K at 300 °C) and σ (~ 4×10 3 S/m at 300 °C) of ZnO increased at elevated temperatures. By incorporating ZnO as the core TE material, the PhD candidate obtained voltages and oscillation amplitudes at least 200 % higher than any previously demonstrated thermopower wave systems (in the order of & 500mV), while maintaining a high specific power (~ 0.5 kW/kg). In the final stage, in order to exceed voltages larger than 1 V, the PhD candidate identified that manganese dioxide (MnO 2 ), which is another TE TMO, can exhibit exceptionally large S and moderate σ at elevated temperatures. As a result, the author implemented MnO 2 as the core TE material. It was shown that the S of MnO 2 increased dramatically with temperature, exhibiting a peak value of approximately –1900 μV/K at 350 °C. Consequently, voltages large enough (~1.8 V) to drive small electronic circuits were obtained, while maintaining high specific powers in the order of 1 kW/kg.
机译:能源的小型化对于下一代电子设备的开发至关重要。但是,减小包括电池,燃料电池,热机和超级电容器在内的所有常用能量产生技术的尺寸都没有导致具有高比功率(功率质量比)的有效且可靠的能源。最近,基于热电波的能量产生新概念已显示出实现小型化的希望。在这样的源中,反应性燃料的放热化学反应与其亲合力耦合到热电(TE)材料的电荷载体,从而导致强烈的热波沿着TE材料的表面自蔓延。该波同时夹带电荷载流子,从而产生大电流。如果TE材料也具有高的塞贝克系数,则可以获得大的输出电压并且随后获得大的比功率输出。由于热波产生功率输出,因此称为热功率波。在博士研究的第一阶段,作者演示了基于Bi 2 Te 3薄膜的热电波系统。由于Bi 2 Te 3具有很高的S(〜–200μV/ K)和σ(10 5 S / m),因此得以实现。由于Bi 2 Te 3的κ值较低,因此作者设计了一种新的策略,将其放在导热氧化铝(Al 2 O 3)衬底上以弥补这一不足。基于Bi 2 Te 3的热电波源产生的电压和振荡要比先前报道的基于多壁碳纳米管(MWNT)的热电波源高(至少150%),同时保持约1 kW /的高比功率。公斤。在第二阶段,作者实现了以p型Sb 2 Te 3和n型Bi 2 Te 3作为具有互补半导体性能的核心TE材料的新颖组合,以显示极性交替的电压信号的产生。在第三阶段,作者首次实现了氧化锌(ZnO),这是TE过渡金属氧化物(TMO),作为热电波源的核心材料。结果表明,ZnO的S(在300°C时约为–500μV/ K)和σ(在300°C时约为4×10 3 S / m)在升高的温度下都会增加。通过将ZnO用作TE的核心材料,该PhD候选物获得的电压和振荡幅度比任何先前展示的热电波系统(≥500mV的量级)至少高200%,同时保持较高的比功率(〜0.5 kW /公斤)。在最后阶段,为了超过大于1 V的电压,该博士候选人确定了另一种TE TMO二氧化锰(MnO 2)在高温下可表现出异常大的S和适中的σ。结果,作者实施了MnO 2作为核心TE材料。结果表明,MnO 2的S随温度急剧增加,在350°C时出现约–1900μV/ K的峰值。因此,获得了足够大的电压(〜1.8 V)来驱动小型电子电路,同时保持了约1 kW / kg的高比功率。

著录项

  • 作者

    Walia S;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号