首页> 外文OA文献 >Hydrodynamic transfer of liquid metal droplets across liquid-liquid interfaces
【2h】

Hydrodynamic transfer of liquid metal droplets across liquid-liquid interfaces

机译:液态金属液滴在液 - 液界面上的流体动力学转移

摘要

Micro-scale liquid metal droplets have been hailed as the potential key building blocks of future micro-electro-mechanical systems (MEMS). However, most of the current liquid metal enabled systems involve millimeter-scale droplets, which are manually injected onto the desired locations of the system. Despite simplicity, this method is impractical for patterning large arrays or complex systems based on micro-scale droplets. Techniques that can generate and process uniform liquid metal droplets on demand would be greatly preferred. The purpose of my PhD research is to develop microfluidic systems capable of continuous generation of micro scale liquid metal droplets in highly viscous liquids such as glycerol, and transfer them into secondary liquids such as sodium hydroxide (NaOH) hydrodynamically. A comprehensive set of experiments utilising high-speed imaging and computational fluid dynamics (CFD) simulations are conducted to investigate the dynamics of liquid metal droplets with single and double liquid-liquid interfaces while transitioning into the secondary liquids. The results indicate that the transition of continuously generated liquid metal droplets from glycerol into NaOH occur under the combined effect of hydrodynamic lift force (due to different viscosities of glycerol and NaOH) and surface tension gradient force (due to different interfacial tensions between the droplet and the liquids). Transition of droplets is quite ordered and predictable in the presence of a single liquid-liquid interface unlike the system with double liquid-liquid interface where the dynamics of droplets depends on the shape of the glycerol core (which in turn depend on the flow rate of the NaOH), and the transition can become disordered, semi-ordered or ordered. Moreover, the direction of transitioning droplets can be hydrodynamically controlled by mismatching the flow rates of the two NaOH streams in a double liquid-liquid interface system. Minimum flow rate mismatch of 150 µl/min between the two NaOH streams is required to change the direction of the droplets where droplets transit into the stream with higher flow rate. This platform offers continuous and selective hydrodynamic transfer of micro scale Galinstan droplets into NaOH stream, which can be integrated into other microfluidic platforms to enable liquid metal droplet based systems for a variety of applications in microfluidics, MEMS, soft electronics and reconfigurable devices.
机译:微型液态金属小滴已被誉为未来微机电系统(MEMS)的潜在关键构件。但是,当前大多数启用液态金属的系统都包含毫米级的液滴,这些液滴会手动注入到系统的所需位置。尽管简单,但是该方法对于基于微米级液滴的大型阵列或复杂系统的构图是不切实际的。可以根据需要产生和处理均匀的液态金属滴的技术将是非常可取的。我的博士学位研究的目的是开发一种微流体系统,该系统能够在高粘度液体(如甘油)中连续生成微尺度的液态金属滴,并将它们动态地转移到诸如氢氧化钠(NaOH)的辅助液体中。进行了一套利用高速成像和计算流体动力学(CFD)模拟的综合实验,以研究具有单液和双液-液界面的液态金属液滴转变为二次液体时的动力学。结果表明,在液体动力升力(由于甘油和NaOH的粘度不同)和表面张力梯度力(由于液滴之间的界面张力不同)的共同作用下,连续生成的液态金属液滴从甘油向NaOH过渡。液体)。与具有双液-液界面的系统不同,液滴的动力学取决于甘油核的形状(反过来取决于甘油的流速),在单个液-液界面的存在下,液滴的过渡是有序且可预测的。 NaOH),过渡过程可能变得无序,半有序或有序。此外,可以通过使双液-液界面系统中的两个NaOH物流的流量不匹配来以流体动力学方式控制液滴的过渡方向。需要两个NaOH流之间的最小流速失配为150μl/ min,以改变液滴的方向,在该方向上液滴以较高的流速过渡到该物流中。该平台可将微型Galinstan液滴连续且选择性地流体动力学转移到NaOH物流中,可以将其集成到其他微流体平台中,以使基于液态金属液滴的系统能够在微流体,MEMS,软电子和可重构设备中进行多种应用。

著录项

  • 作者

    Gol Berrak;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号