首页> 外文OA文献 >Optimisation of parametric equations for shock transmission through surface ships from underwater explosions
【2h】

Optimisation of parametric equations for shock transmission through surface ships from underwater explosions

机译:水下爆炸作用下水面舰艇冲击传递参数方程的优化

摘要

Currently shock effects on surface ships can be determined by full scale shock trials, Finite Element Analysis or semi empirical methods that reduce the analytical problem to a limited number of degrees of freedom and include hull configurations, construction methods and materials in an empirical way to determine any debilitating effects that an explosion may have on the ship. This research has been undertaken to better understand the effect of hull shape on surface ships' shock response to external underwater explosions (UNDEX). The study is within the semi empirical method category of computations. A set of simple closed-form equations has been developed that accurately predicts the magnitude of dynamic excitation of different 2- D rigid-hull shapes subject to far-field UNDEX events. This research was primarily focused on the affects of 2-D rigid hull shapes and their contribu tion to global ship motions. A section of the thesis, "T-Joint", considers the exacerbating affects that shock wave propagation has on a typical Glass Reinforced Polymer (GRP) laminated ship T-Joint with respect to its strength and the transmission of the shock to the adjacent bulkhead. The hull motion parametric equations developed in this research are compared against computational fluid structure interaction predictions obtained from non-linear, explicit finite Element (FE) simulations using -the LS-Dyna code. The equations are shown to predict the vertical acceleration and velocity of four basic hull shapes to within approximately ±15% of the - FE model results. Addition error estimates obtained for sensitivity analyses, predicted that the LS-Dyna simulations were accurate to within ±11 % when compared to real UNDEX events. The resultant error of the closed-form solutions compared to real UNDEX events is the summation of the two error estimates at ±26%. A number of different GRP T-Joint geometries were r anked with respect to their capability of withstanding UNDEX shock loading, the study included three basic geometries, allowing for the affects of non-monolithic construction due to jointing methods and material strain rate considerations. The study concluded that two of the joint geometries: the 45° chamfered and the 40 mm fillet preformed significantly better that the 22.5° chamfered geometry.
机译:当前,可以通过全面的冲击试验,有限元分析或半经验方法来确定对水面舰船的冲击影响,这些方法可以将分析问题减少到有限的自由度,并以经验的方式包括船体配置,建造方法和材料来确定爆炸可能对船舶造成的任何破坏作用。进行这项研究是为了更好地了解船体形状对水面舰船对外部水下爆炸(UNDEX)的冲击反应的影响。该研究属于计算的半经验方法类别。已开发出一组简单的封闭形式方程,可精确预测受远场UNDEX事件影响的不同2-D刚性船体形状的动态激励幅度。这项研究主要集中在二维刚性船体形状的影响及其对全球船舶运动的贡献上。论文的一部分“ T型接头”考虑了冲击波传播对典型的玻璃增强聚合物(GRP)层压船T型接头的加剧影响,即其强度和冲击力向邻近的传递。舱壁。将本研究中开发的船体运动参数方程与使用-LS-Dyna代码从非线性显式有限元(FE)仿真获得的计算流体结构相互作用预测进行比较。所示方程式可预测四种基本船体形状的垂直加速度和速度,大约在-FE模型结果的±15%之内。为进行灵敏度分析而获得的附加误差估计值预测,与真实的UNDEX事件相比,LS-Dyna模拟的精确度在±11%以内。与实际UNDEX事件相比,闭式解的结果误差为两个误差估计值的总和为26%。考虑到它们承受UNDEX冲击载荷的能力,提出了许多不同的GRP T型接头几何形状,该研究包括三个基本几何形状,考虑到连接方法和材料应变率的考虑,考虑了非整体构造的影响。研究得出的结论是,两个关节几何形状为:45°倒角,并且40毫米鱼片的预成型效果明显好于22.5度倒角的几何形状。

著录项

  • 作者

    Elder D;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号