首页> 外文OA文献 >Transforming flexible devices to stretchable oxide-based electronics, photonics, and sensors
【2h】

Transforming flexible devices to stretchable oxide-based electronics, photonics, and sensors

机译:将柔性设备转换为可拉伸的基于氧化物的电子设备,光子学和传感器

摘要

Lightweight compact electronics are currently the most popular personal electronic devices. A trend towards wearable and body compatible smart devices is clearly indicated, creating the demand for electronics to be fully flexible and stretchable to realise next generation devices. To allow for this additional degree of freedom, strategies for fabricating these devices need to be established. The fabrication of such devices pose a challenge to materials science due to the inherent brittle nature of metals, oxides and semiconductors, the core building block for powerful electronics. This thesis explores new methods of integrating these materials into flexible and stretchable platforms. Initially a comprehensive study into metal films on flexible substrates is carried out with insights into strategies to reduce the sensitivity towards strain. Based on these insights, multilayer resonating terahertz structures on a flexible platform are presented and analysed, showcasing the ability to distinguish polarisation efficiently. The integration of a functional material namely zinc oxide into a flexible platform is demonstrated by realising a visible-blind UV imaging array capable of operating in various bending states. In order to enable an additional degree of freedom, strategies to enable stretchability of functional oxides is explored. A novel method of transferring high temperature processed oxides (indium tin oxide) is presented, to overcome process temperature limitations. Secondly, a phenomena named “micro-tectonics” which allows oxides to stretch and bend is discovered and analysed. Based on the micro-tectonic effect zinc oxide stretchable devices are demonstrated that are capable of detecting UV and gases efficiently at room temperature which outperform their rigid counterparts. Additionally high refractive index contrast devices are shown that dynamically manipulate visible light via device deformation. Multifaceted analysis provides insight into the excellent tunability of these diffractive and resonating optical devices. The thesis offers a cross-disciplinary insight into incorporation of functional oxide thin films with flexible and stretchable materials, and the potential for a new paradigm of functional devices.
机译:轻巧的紧凑型电子设备是当前最受欢迎的个人电子设备。清楚地表明了可穿戴和与身体兼容的智能设备的趋势,这导致对电子产品具有充分的灵活性和可伸缩性以实现下一代设备的需求。为了允许这种额外的自由度,需要建立制造这些装置的策略。由于金属,氧化物和半导体的固有脆性,这种设备的制造对材料科学构成了挑战,而金属,氧化物和半导体是强大电子设备的核心组成部分。本文探索了将这些材料集成到柔性和可拉伸平台中的新方法。最初,对柔性基板上的金属膜进行了全面的研究,并深入研究了降低应变敏感性的策略。基于这些见解,提出并分析了柔性平台上的多层谐振太赫兹结构,展示了有效区分极化的能力。通过实现一种能够在各种弯曲状态下运行的可见盲UV成像阵列,可以证明将功能材料即氧化锌集成到柔性平台中的方法。为了提供额外的自由度,探索了使功能性氧化物可拉伸的策略。提出了一种转移高温处理的氧化物(铟锡氧化物)的新方法,以克服工艺温度的限制。第二,一种叫做“微构造”的现象。发现并分析了允许氧化物拉伸和弯曲的金属。基于微构造效应,氧化锌可拉伸装置被证明能够在室温下有效检测紫外线和气体,性能优于其刚性对应物。另外,还显示了高折射率对比装置,该装置可通过装置变形动态地控制可见光。多面分析提供了对这些衍射和共振光学设备出色的可调谐性的洞察力。该论文提供了跨学科的见解,涉及功能氧化物薄膜与柔性和可拉伸材料的结合,以及功能器件的新范例的潜力。

著录项

  • 作者

    Gutruf P;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号