首页> 外文OA文献 >Cooperative coevolutionary differential evolution with improved augmented Lagrangian to solve constrained optimisation problems
【2h】

Cooperative coevolutionary differential evolution with improved augmented Lagrangian to solve constrained optimisation problems

机译:具有改进的增广拉格朗日的协同协同进化差分进化解决约束优化问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In constrained optimisation, the augmented Lagrangian method is considered as one of the most effective and efficient methods. This paper studies the behaviour of augmented Lagrangian function (ALF) in the solution space and then proposes an improved augmented Lagrangian method. We have shown that our proposed method can overcome some of the drawbacks of the conventional augmented Lagrangian method. With the improved augmented Lagrangian approach, this paper then proposes a cooperative coevolutionary differential evolution algorithm for solving constrained optimisation problems. The proposed algorithm is evaluated on a set of 24 well-known benchmark functions and five practical engineering problems. Experimental results demonstrate that the proposed algorithm outperforms the state-of-the-art algorithms with respect to solution quality as well as efficiency.
机译:在约束优化中,增强拉格朗日方法被认为是最有效和高效的方法之一。本文研究了扩展拉格朗日函数(ALF)在解空间中的行为,然后提出了一种改进的扩展拉格朗日方法。我们已经表明,我们提出的方法可以克服常规增强拉格朗日方法的一些缺点。利用改进的增强拉格朗日方法,提出了一种协同协同进化差分进化算法,用于求解约束优化问题。该算法对24个著名的基准函数和5个实际工程问题进行了评估。实验结果表明,该算法在解决方案质量和效率方面都优于最新算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号