首页> 外文OA文献 >Investigation of multilayered surface acoustic wave devices for gas sensing applications : employing piezoelectric intermediate and nanocrystalline metal oxide sensitive layers
【2h】

Investigation of multilayered surface acoustic wave devices for gas sensing applications : employing piezoelectric intermediate and nanocrystalline metal oxide sensitive layers

机译:用于气体传感应用的多层声表面波装置的研究:采用压电中间层和纳米晶金属氧化物敏感层

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis, the author proposes and develops novel multilayered Surface Acoustic Wave (SAW) devices with unique attributes for gas sensing applications. The design, simulation, fabrication and gas sensing performance of three multilayered SAW structures has been undertaken. The investigated structures are based on two substrates having high electromechanical coupling coefficient: lithium niobate (LiNbO3) and lithium tantalate (LiTaO3), with a piezoelectric zinc oxide (ZnO) intermediate layer. Sensitivity towards target gas analytes is provided by thin film indium oxide (InOx) or tungsten trioxide (WO3). The high performance of the gas sensors is achieved by adjusting the intermediate ZnO layer thickness. Sensitivity calculations, undertaken with perturbation theory illustrate how the intermediate ZnO layer can be employed to modify the velocity-permittivity product of the supported SAW modes, resulting in highly sensitive conductometric SAW gas sensors. The work contained within this thesis addresses a broad spectrum of issues relating to multilayered SAW gas sensors. Topics include finite-element modelling, perturbation theory, micro-fabrication, metal oxide deposition, material characterisation and experiential evaluation of the layered SAW sensors towards nitrogen dioxide (NO2), hydrogen (H2) and ethanol gas phase analytes. The development of two-dimensional (2D) and three dimensional (3D) finite-element models provides a deep insight and understanding of acoustic wave propagation in layered anisotropic media, whilst also illustrating that the entire surface of the device can and should be used as the active sensing area. Additionally, the unique and distinctive surface morphology of the layered structures are examined by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The crystalline structure and orientation of the ZnO and WO3 layers are also examined by X-ray Diffraction Spectroscopy (XRD). The novel multilayered SAW structures a re shown to be highly sensitive, capable of sensing NO2 and ethanol concentration levels in the parts-per-billion and parts-per-million range, respectively, and H2 concentrations below 1.00% in air. The addition of platinum or gold catalyst activator layers on the WO3 sensitive layer is shown to improve sensitivity and dynamic performance, with response magnitudes up to 50 times larger than bare WO3. The gas sensing performance of the investigated structures provide strong evidence that high sensitivity can be achieved utilising multilayered SAW structures for conductometric gas sensing applications.
机译:在本文中,作者提出并开发了具有独特属性的新型多层表面声波(SAW)器件,用于气体传感应用。进行了三个多层SAW结构的设计,仿真,制造和气体传感性能。研究的结构基于具有高机电耦合系数的两种基材:铌酸锂(LiNbO3)和钽酸锂(LiTaO3),以及压电氧化锌(ZnO)中间层。薄膜氧化铟(InOx)或三氧化钨(WO3)提供了对目标气体分析物的灵敏度。气体传感器的高性能是通过调整中间ZnO层的厚度来实现的。利用微扰理论进行的灵敏度计算说明了如何使用中间的ZnO层来修改所支持的SAW模式的速度-介电常数乘积,从而产生高灵敏度的电导SAW气体传感器。本论文中的工作解决了与多层SAW气体传感器有关的广泛问题。主题包括有限元建模,微扰理论,微细加工,金属氧化物沉积,分层SAW传感器对二氧化氮(NO2),氢(H2)和乙醇气相分析物的材料表征和经验评估。二维(2D)和三维(3D)有限元模型的发展提供了对声波在层状各向异性介质中传播的深入了解和理解,同时还说明了设备的整个表面可以并且应该用作活动的感应区域。另外,通过扫描电子显微镜(SEM)和原子力显微镜(AFM)检查了层状结构的独特和独特的表面形态。 ZnO和WO3层的晶体结构和取向也通过X射线衍射光谱(XRD)进行了检查。新型多层SAW结构被证明具有很高的灵敏度,能够感应到NO2和乙醇浓度分别在十亿分之几和百万分之几的范围内,而H2在空气中的浓度低于1.00%。已显示在WO3敏感层上添加铂或金催化剂活化剂层可改善灵敏度和动态性能,其响应幅度比裸WO3大50倍。所研究结构的气体传感性能提供了有力的证据,表明将多层SAW结构用于电导气体传感应用可以实现高灵敏度。

著录项

  • 作者

    Ippolito S;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号