首页> 外文OA文献 >DISCOVERING SEQUENTIAL DISEASE PATTERNS IN MEDICAL DATABASES USING FREESPAN MINING AND udPREFIKSPAN MINING APPROACHud
【2h】

DISCOVERING SEQUENTIAL DISEASE PATTERNS IN MEDICAL DATABASES USING FREESPAN MINING AND udPREFIKSPAN MINING APPROACHud

机译:利用FREEspaN矿业和医学数据挖掘医学数据库中的序贯疾病模式pREFIKspaN采矿方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dr. Soetomo General Hospital had computerized their system to stored inpatient’s history. With lots of data to beudanalysis, one of the needs is a decision support system in order to anticipate the spread of the disease. Therefore theudhospital need a system to provide the sequential pattern of disease. One of the sequential pattern mining algorithm isudpattern growth based approach. The result is sequential pattern of disease from particular area in a time period based onudinpatient’s history. Input from user are time period, minimum support, province, and multi-dimensional. The system builtudwith Java Net Beans 6.7 and Oracle 10g. This research showed that FreeSpan and PrefikSpan produce the same output.udHowever, FreeSpan is more appropriate for dr. Soetomo General Hospital because the proccesing time is faster.
机译:Soetomo总医院医生已经将其系统进行了计算机处理,以存储患者的病史。由于要进行大量的数据分析,因此需要一个决策支持系统来预测疾病的传播。因此,医院需要一种提供疾病顺序模式的系统。顺序模式挖掘算法之一是基于模式增长的方法。结果是根据 udin Patient的病史在特定时间段内特定区域的疾病顺序模式。用户的输入是时间段,最小支持,省和多维。系统使用Java Net Beans 6.7和Oracle 10g构建 ud。该研究表明FreeSpan和PrefikSpan产生相同的输出。 ud但是,FreeSpan更适合dr。 Soetomo综合医院,因为处理时间更快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号