首页> 外文OA文献 >Enhanced information retrieval by exploiting recommender techniques in cluster-based link analysis
【2h】

Enhanced information retrieval by exploiting recommender techniques in cluster-based link analysis

机译:通过在基于群集的链接分析中利用推荐技术来增强信息检索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Inspired by the use of PageRank algorithms in document ranking, we develop and evaluate a cluster-based PageRank algorithm to re-rank information retrieval (IR) output with the objective of improving ad hoc search effectiveness. Unlike existing work, our methods exploit recommender techniques to extract the correlation between documents and apply detected correlations in a cluster-based PageRank algorithm to compute the importance of each document in a dataset. In this study two popular recommender techniques are examined in four proposed PageRank models to investigate the effectiveness of our approach. Comparison of our methods with strong baselines demonstrates the solid performance of our approach. Experimental results are reported on an extended version of the FIRE 2011 personal information retrieval (PIR) data collection which includes topically related queries with click-through data and relevance assessment data collected from the query creators. The search logs of the query creators are categorized based on their different topical interests. The experimental results show the significant improvement of our approach compared to results using standard IR and cluster-based PageRank methods.
机译:受到在文档排名中使用PageRank算法的启发,我们开发和评估了基于集群的PageRank算法,以对信息检索(IR)输出进行重新排名,以提高即席搜索的效率。与现有工作不同,我们的方法利用推荐技术来提取文档之间的相关性,并在基于群集的PageRank算法中应用检测到的相关性,以计算数据集中每个文档的重要性。在这项研究中,在四个建议的PageRank模型中检查了两种流行的推荐技术,以研究我们方法的有效性。将我们的方法与强基准进行比较,证明了我们方法的出色性能。在FIRE 2011个人信息检索(PIR)数据收集的扩展版本上报告了实验结果,其中包括与点击创建数据和从查询创建者收集的相关性评估数据相关的局部相关查询。查询创建者的搜索日志根据他们不同的主题兴趣进行分类。实验结果表明,与使用标准IR和基于簇的PageRank方法的结果相比,我们的方法有了显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号