首页> 外文OA文献 >Efficient question answering with question decomposition and multiple answer streams
【2h】

Efficient question answering with question decomposition and multiple answer streams

机译:通过问题分解和多个答案流进行高效的问题回答

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The German question answering (QA) system IRSAW (formerly:udInSicht) participated in QA@CLEF for the fth time. IRSAWudwas introduced in 2007 by integrating the deep answer producer InSicht, several shallow answer producers, and a logical validator. InSicht builds on a deep QA approach: it transforms documents to semantic representations using a parser, draws inferences on semantic representations withudrules, and matches semantic representations derived from questions and documents. InSicht was improved for QA@CLEF 2008 mainly in the following two areas. The coreference resolver was trained on question series instead of newspaper texts in order to be better applicable for follow-up questions. Questions are decomposed by several methods on the level of semantic representations. On the shallow processing side, the number of answer producers was increased from two to four by adding FACT, a fact index, and SHASE, a shallow semantic network matcher. The answerudvalidator introduced in 2007 was replaced by the faster RAVE validator designed for logic-based answer validation under time constraints. Using RAVE for merging the results of the answer producers, monolingual German runs and bilingual runs with source language English and Spanish were produced by applying the machine translation web service Promt. An error analysis shows the main problems for the precision-orienteduddeep answer producer InSicht and the potential offered by the recall-oriented shallow answer producers.
机译:德语问答系统IRSAW(以前为 udInSicht)第四次参加了QA @ CLEF。 IRSAW ud是在2007年引入的,它集成了深度答案生成器InSicht,几个浅层答案生成器和一个逻辑验证器。 InSicht建立在深入的质量保证方法之上:它使用解析器将文档转换为语义表示,使用 udrules对语义表示进行推论,并匹配从问题和文档衍生的语义表示。 InSicht在QA @ CLEF 2008上得到了改进,主要在以下两个方面。为了更好地适用于后续问题,对共同推荐解决者进行了问题系列培训,而不是报纸文章培训。在语义表示的层面上,可以通过几种方法来分解问题。在浅层处理方面,通过添加事实索引FACT和浅语义网络匹配器SHASE,答案生成器的数量从2个增加到4个。 2007年推出的answer udvalidator被更快的RAVE验证器所取代,该RAVE验证器设计用于在时间限制下基于逻辑的答案验证。使用RAVE合并答案生成者的结果,通过应用机器翻译Web服务Promt生成了单语言的德语运行和带有源语言英语和西班牙语的双语运行。误差分析显示了面向精度的 dudeep答案生成器InSicht的主要问题以及面向召回的浅层答案生成器所提供的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号