首页> 外文OA文献 >Study of resonance hairpin probe for electron density measurements in low temperature plasmas
【2h】

Study of resonance hairpin probe for electron density measurements in low temperature plasmas

机译:用于低温等离子体中电子密度测量的共振发夹探针的研究

摘要

The thesis deals with a plasma diagnostic device, the Hairpin Probe, popularly used for measuring electron density in rarefied gaseous plasma. Electron density, n_e, is an important plasma parameter as electrons are mainly responsible for inelastic collision with background neutrals resulting in ionization, excitation, and various chemical processes in plasma. Besides, the basic plasmaudparameters such as plasma frequency, Debye length, plasma permittivity, and plasma conductivity are all based on n_e. Therefore accurate measurement of n_e is fundamentally desirable for quantifying the state of plasma.ududThe underlying principle relies on measuring the effective permittivity of medium surrounding the hairpin. If length of hairpin is chosen equal to a quarter-wavelength of an incident microwave signal, a standing wave is set-upudalong its length. Under this condition, a strong absorbance of incident em signal is observed as hairpin is driven to resonance. When hairpin is immersed in plasma, the cold plasma permittivity is related to ne. However if adjacentuddielectrics are present in the vicinity of probe, it can adversely affects the measurement. As one of the practical applications of hairpin, high refractory material is coated on the probe surface when applied to reactive etch plasmas.udHowever, the contribution of external dielectric on probe resonances in plasma is an outstanding problem.ududIn this thesis, we have primarily addressed the above issues. A comprehensive study is also devoted towards application of probe in strongly magnetized plasmas. The electrons gyro motion modifies the plasma permittivity and results in the observance of dual resonances as compared with non-magnetized plasmas. The other important issues addressed are different loss mechanisms causing dispersion of resonance signal in plasma. This is particular topic ofudinterest in order to broaden the range of n_e measurement by probe.
机译:本文涉及一种等离子体诊断设备,即发夹探针,该探针通常用于测量稀有气体等离子体中的电子密度。电子密度n_e是重要的等离子体参数,因为电子主要负责与背景中性物发生非弹性碰撞,从而导致等离子体中的电离,激发和各种化学过程。此外,诸如等离子体频率,德拜长度,等离子体介电常数和等离子体电导率之类的基本等离子体参数均基于n_e。因此,准确地测量n_e是量化血浆状态的根本要求。基本原理依赖于测量发夹周围介质的有效介电常数。如果选择发夹的长度等于入射微波信号的四分之一波长,则会建立一个驻波其长度。在这种情况下,发夹驱动共振时,会观察到入射em信号的强吸收性。当发夹浸入等离子体中时,冷等离子体介电常数与ne有关。但是,如果探针附近存在相邻的 uddielectrics,则会对测量产生不利影响。作为发夹的实际应用之一,当将高耐火材料应用于反应性蚀刻等离子体时,会在探针表面上涂覆。 ud,但是,外部电介质对等离子体中探针共振的贡献是一个突出的问题。 ud ud我们主要解决了上述问题。全面的研究也致力于探针在强磁化等离子体中的应用。与未磁化的等离子体相比,电子陀螺运动改变了等离子体的介电常数,并导致了双共振的观察。解决的其他重要问题是导致等离子体中共振信号分散的不同损耗机制。为了扩大探针的n_e测量范围,这是一个特别有趣的话题。

著录项

  • 作者

    Singh Gogna Gurusharan;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号