首页> 外文OA文献 >Numerical methods for nonlinear singulary perturbed differential equations
【2h】

Numerical methods for nonlinear singulary perturbed differential equations

机译:非线性奇异摄动微分方程的数值解法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis, parameter-uniform numerical methods are constructed and analysed for nonlinear singularly perturbed ordinary differential equations. In the case of first order problems, several classes of nonlinear problems are examined and various types of initial layers are identified. In the case of second order boundary value problems, singularly perturbed quasilinear problems of convection-diffusion type are studied. Problems with boundary turning points and problems with internal layers are examined. For all problems, the numerical methods consist of monotone nonlinear finite difference operators and appropriate piecewiseuniformShishkin meshes. The transition points in the Shishkin meshes are constructed based on sharp parameter-explicit bounds on the singular components of the continuous solution. Existence and uniqueness of both the continuous and discrete solutions are established using the method of upper and lower solutions. Numerical results are presented to both illustrate the theoretical error bounds and to display the performance of the numerical methods in practice.
机译:本文针对非线性奇异摄动常微分方程,构造并分析了参数统一的数值方法。对于一阶问题,检查了几类非线性问题,并确定了各种类型的初始层。在二阶边值问题的情况下,研究了对流扩散型奇摄动拟线性问题。研究了边界转折点和内部层的问题。对于所有问题,数值方法均由单调非线性有限差分算子和适当的分段均匀Shishkin网格组成。 Shishkin网格中的过渡点是基于连续解奇异分量上的清晰参数显式边界构造的。连续解和离散解的存在性和唯一性是使用上下解的方法确定的。给出数值结果既可以说明理论误差范围,又可以展示实际中数值方法的性能。

著录项

  • 作者

    Quinn Jason;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号