首页> 外文OA文献 >Identification of an optimal principal components analysis threshold to describe jump height accurately using vertical ground reaction forces
【2h】

Identification of an optimal principal components analysis threshold to describe jump height accurately using vertical ground reaction forces

机译:确定最佳主成分分析阈值,使用垂直地面反作用力精确描述跳跃高度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In functional principal component analysis (fPCA) a threshold is chosen to define the number of retained principal components, which corresponds to the amount of preserved information. A variety of thresholds have been used in previous studies and the chosen threshold is often not evaluated. The aim of this study is to identify the optimal threshold that preserves the information needed to describe a dependent variable accurately. To find an optimal threshold, a neural network was used to predict jump height from vertical ground reaction force curve measures generated by a fPCA at different thresholds. The findings indicate that a threshold from 99% to 99.9% (6-11principal components) is optimal for describing jump height, as these thresholds generated significantly lower jump height prediction errors than other thresholds.
机译:在功能主成分分析(fPCA)中,选择一个阈值以定义保留的主成分的数量,该数量对应于保留的信息量。在先前的研究中已经使用了各种阈值,并且通常不评估所选阈值。这项研究的目的是确定最佳阈值,该阈值保留了准确描述因变量所需的信息。为了找到最佳阈值,使用神经网络根据fPCA在不同阈值下生成的垂直地面反作用力曲线测量值来预测跳跃高度。研究结果表明,从99%到99.9%(6-11个主要成分)的阈值最适合描述跳跃高度,因为这些阈值所产生的跳跃高度预测误差比其他阈值低得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号