首页> 外文OA文献 >Using Choquet integral as preference model in interactive evolutionary multiobjective optimization
【2h】

Using Choquet integral as preference model in interactive evolutionary multiobjective optimization

机译:在交互式进化多目标优化中使用Choquet积分作为偏好模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose an interactive multiobjective evolutionary algorithm that attempts to discover the most preferred part of the Pareto-optimal set. Preference information is elicited by asking the user to compare some solutions pairwise. This information is then used to curb the set of compatible user’s value functions, and the multiobjective evolutionary algorithm is run to simultaneously search for all solutions that could potentially be the most preferred. Compared to previous similar approaches, we implement a much more efficient way of determining potentially preferred solutions, that is, solutions that are best for at least one value function compatible with the preference information provided by the decision maker. For the first time in the context of evolutionary computation, we apply the Choquet integral as a user’s preference model, allowing us to capture interactions between objectives. As there is a trade-off between the flexibility of the value function model and the complexity of learning a faithful model of user’s preferences, we propose to start the interactive process with a simple linear model but then to switch to the Choquet integral as soon as the preference information can no longer be represented using the linear model. An experimental analysis demonstrates the effectiveness of the approach.
机译:我们提出了一种交互式多目标进化算法,该算法试图发现帕累托最优集的最优选部分。通过要求用户成对比较一些解决方案来得出偏好信息。然后,此信息将用于限制兼容的用户值函数集,并运行多目标进化算法以同时搜索可能是最优选的所有解决方案。与以前的类似方法相比,我们采用了一种更为有效的方法来确定潜在的首选解决方案,即最适合与决策者提供的偏好信息兼容的至少一个值函数的解决方案。在进化计算的背景下,我们首次将Choquet积分用作用户的偏好模型,从而使我们能够捕获目标之间的相互作用。由于在价值函数模型的灵活性和学习忠实的用户偏好模型的复杂性之间需要权衡取舍,因此我们建议使用简单的线性模型启动交互过程,然后尽快切换到Choquet积分。偏好信息不再可以使用线性模型表示。实验分析证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号