首页> 外文OA文献 >Road detection algorithm for Autonomous Navigation Systems based on dark channel prior and vanishing point in complex road scenes
【2h】

Road detection algorithm for Autonomous Navigation Systems based on dark channel prior and vanishing point in complex road scenes

机译:基于暗道先行消失点和复杂道路场景消失点的自主导航系统道路检测算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Vision-based road extraction is essentially important in many fields, such as for intelligent traffic, robot navigation and so on. However, the road detection in urban or ill-structured roads is still very challenging at current stage, and the existing methods often suffer from high computational complexity. This paper reports a novel and efficient method for road detection in challenging scenes. First, the dark channel based image segmentation is proposed to distinguish a rough road region from complex background noise, which is envisioned to reduce the workload of road detection. Furthermore, instead of using the conventional pixel-wise soft voting, a new voting strategies based on the vanishing point and the properties of the segmented regions is proposed to further reduce the computation time of road extraction stage. Finally, the segmented region which has the maximum voting value is chose as the road region. Experimental results demonstrated that the proposed algorithm shows superior performance in different kinds of road scenes. It can remove the interference from pedestrians, vehicles and other obstacles. Our method is about 40 times faster in detection speed, when compared to a recently well-known approach.
机译:基于视觉的道路提取在许多领域至关重要,例如对于智能交通,机器人导航等。然而,在当前阶段,城市或结构不良道路的道路检测仍然非常具有挑战性,并且现有方法经常遭受高计算复杂度的困扰。本文报告了一种新颖而有效的方法,用于在充满挑战的场景中进行道路检测。首先,提出了基于暗通道的图像分割方法,以区分粗糙的道路区域和复杂的背景噪声,从而减少了道路检测的工作量。此外,代替传统的像素式软投票,提出了一种基于消失点和分割区域属性的新投票策略,以进一步减少道路提取阶段的计算时间。最后,选择投票价值最大的分割区域作为道路区域。实验结果表明,该算法在不同的道路场景下均表现出优异的性能。它可以消除行人,车辆和其他障碍物的干扰。与最近众所周知的方法相比,我们的方法的检测速度快40倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号