首页> 外文OA文献 >New methods to improve the pixel domain steganography, steganalysis, and simplify the assessment of steganalysis tools
【2h】

New methods to improve the pixel domain steganography, steganalysis, and simplify the assessment of steganalysis tools

机译:改进像素域隐写术,隐写分析和简化隐写分析工具评估的新方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Unlike other security methods, steganography hides the very existence of secret messages rather than their content only. Both steganography and steganalysis are strongly related to each other, the new steganographic methods should be evaluated with current steganalysis methods and vice-versa. Since steganography is considered broken when the stego object is recognised, undetectability would be the most important property of any steganographic system. Digital image files are excellent media for steganography, as they have redundancy in their representation. Also, the most widely used method of image steganography is the least significant bit (LSB) embedding.This thesis investigates the latest methods of pixel domain steganography and provides new efficient approaches to improve them in three perspectives: embedding, detection, and the digital forensics investigation process. Firstly, the probability of detection is considered for non-adaptive LSB and 2LSB image steganography even for the embedding rate of 1. The proposed method noticeably reduced the probability of detection for different detection methods via improving the embedding efficiency of both LSB and 2LSB methods, which is not restricted to a specific steganalysis attack.The extensions to LSB steganography methods have received great attention from steganographers, especially 2LSB, because it is easy to implement, has a higher capacity, is visually imperceptible, brings complex changes to the image pixel values and is harder to detect. The proposed method improves the detection accuracy of the current state of the art targeted 2LSB steganalysis methods via a novel approach pixel value grouping and statistical analysis of the image pixel values histogram. Moreover, a discrete classifier version of the proposed method is developed which gives a label (‘Stego’ or ‘Clean’) to the analysed image and avoids the overhead of setting a right threshold value.The last perspective of this research considers the evaluation process of the steganalysis tools and simplifying the digital forensics investigation process. Hence, a novel statistical method is proposed to effectively simplify the investigation process by showing the area of differences between the testing image set and the random set of images that is used as a baseline. It also indicates whether the difference is significant or not.All the above mentioned novel approaches included in this thesis are proven, in both theoretical and practical perspectives, to be better than the current state-of-the-art methods and add some value to the knowledge in the field of steganography, steganalysis and its applications.Key words: Steganography, Steganalysis, LSB embedding, 2LSB embedding, Forensic steganalysis, LSB embedding, 2LSB steganalysis
机译:与其他安全方法不同,隐秘术隐​​藏秘密消息的存在,而不仅仅是其内容。隐写术和隐写分析两者之间有着密切的联系,应使用当前的隐写分析方法对新的隐写方法进行评估,反之亦然。由于在识别出隐身物体时,隐写术被认为已损坏,因此不可检测性将是任何隐写术系统的最重要属性。数字图像文件是隐写术的绝佳媒体,因为它们的表示形式具有冗余性。此外,图像隐写术使用最广泛的方法是最低有效位(LSB)嵌入。本文研究了像素域隐写术的最新方法,并从嵌入,检测和数字取证三个方面提供了新的有效方法来改进它们。调查过程。首先,即使嵌入率为1,也考虑了非自适应LSB和2LSB图像隐写的检测概率。通过提高LSB和2LSB方法的嵌入效率,该方法显着降低了不同检测方法的检测概率, LSB隐写方法的扩展引起了隐写术人员的高度关注,尤其是2LSB,因为它易于实现,容量更高,视觉上难以察觉,给图像像素值带来了复杂的变化。而且很难发现。所提出的方法通过新颖的方法像素值分组和图像像素值直方图的统计分析,提高了当前针对性的2LSB隐写分析方法的检测精度。此外,开发了该方法的离散分类器版本,该方法为被分析的图像提供了标签(``Stego''或``Clean''),并避免了设置正确阈值的开销。本研究的最后一个观点考虑了评估过程隐写分析工具的使用,并简化了数字取证调查过程。因此,提出了一种新颖的统计方法,通过显示测试图像集和用作基准的图像的随机集之间的差异区域来有效简化调查过程。本文还包括所有上述新颖方法,无论从理论上还是实践上都被证明比当前的最新方法更好,并为该方法增加了一些价值。关键词:隐写术,隐写分析,LSB嵌入,2LSB嵌入,法医隐写,LSB嵌入,2LSB隐写

著录项

  • 作者

    Khalind Omed Saleem;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号