首页> 外文OA文献 >Modeling of CMOS devices and circuits on flexible ultrathin chips
【2h】

Modeling of CMOS devices and circuits on flexible ultrathin chips

机译:柔性超薄芯片上CmOs器件和电路的建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The field of flexible electronics is rapidly evolving. The ultrathin chips are being used to address the high-performance requirements of many applications. However, simulation and prediction of changes in response of device/circuit due to bending induced stress remains a challenge as of lack of suitable compact models. This makes circuit designing for bendable electronics a difficult task. This paper presents advances in this direction, through compressive and tensile stress studies on transistors and simple circuits such as inverters with different channel lengths and orientations of transistors on ultrathin chips. Different designs of devices and circuits in a standard CMOS 0.18-μm technology were fabricated in two separated chips. The two fabricated chips were thinned down to 20 μm using standard dicing-before-grinding technique steps followed by post-CMOS processing to obtain sufficient bendability (20-mm bending radius, or 0.05% nominal strain). Electrical characterization was performed by packaging the thinned chip on a flexible substrate. Experimental results show change of carrier mobilities in respective transistors, and switching threshold voltage of the inverters during different bending conditions (maximum percentage change of 2% for compressive and 4% for tensile stress). To simulate these changes, a compact model, which is a combination of mathematical equations and extracted parameters from BSIM4, has been developed in Verilog-A and compiled into Cadence Virtuoso environment. The proposed model predicts the mobility variations and threshold voltage in compressive and tensile bending stress conditions and orientations, and shows an agreement with the experimental measurements (1% for compressive and 0.6% for tensile stress mismatch).
机译:柔性电子领域正在迅速发展。超薄芯片用于满足许多应用的高性能要求。然而,由于缺乏合适的紧凑模型,模拟和预测由于弯曲引起的应力而引起的设备/电路响应的变化仍然是一个挑战。这使得可弯曲电子设备的电路设计成为一项艰巨的任务。本文通过对晶体管和简单电路(例如,具有不同沟道长度和超薄芯片上晶体管方向的逆变器)之类的简单电路进行压应力和拉应力研究,提出了该方向的进展。在两个分离的芯片中制造了采用标准CMOS0.18-μm技术的器件和电路的不同设计。使用标准的先切后磨技术步骤将两个制造的芯片减薄至20μm,然后进行CMOS后处理,以获得足够的可弯曲性(20毫米弯曲半径或0.05%的标称应变)。通过将变薄的芯片封装在柔性基板上来执行电学表征。实验结果表明,在不同的弯曲条件下,各个晶体管中载流子迁移率的变化以及逆变器的开关阈值电压(压缩时最大百分比变化为2%,拉伸应力时最大百分比变化为4%)。为了模拟这些变化,已经在Verilog-A中开发了一个紧凑模型,该模型是数学方程式和从BSIM4提取的参数的组合,并已编译到Cadence Virtuoso环境中。所提出的模型可预测在压缩和拉伸弯曲应力条件和方向下的迁移率变化和阈值电压,并与实验测量结果一致(压缩为1%,拉伸应力不匹配为0.6%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号