首页> 外文OA文献 >Infrastructures and services for remote sensing data production management across multiple satellite data centers
【2h】

Infrastructures and services for remote sensing data production management across multiple satellite data centers

机译:多个卫星数据中心的遥感数据生产管理基础设施和服务

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the number of satellite sensors and date centers being increased continuously, it is becoming a trend to manage and process massive remote sensing data from multiple distributed sources. However, the combination of multiple satellite data centers for massive remote sensing (RS) data collaborative processing still faces many challenges. In order to reduce the huge amounts of data migration and improve the efficiency of multi-datacenter collaborative process, this paper presents the infrastructures and services of the data management as well as workflow management for massive remote sensing data production. A dynamic data scheduling strategy was employed to reduce the duplication of data request and data processing. And by combining the remote sensing spatial metadata repositories and Gfarm grid file system, the unified management of the raw data, intermediate products and final products were achieved in the co-processing. In addition, multi-level task order repositories and workflow templates were used to construct the production workflow automatically. With the help of specific heuristic scheduling rules, the production tasks were executed quickly. Ultimately, the Multi-datacenter Collaborative Process System (MDCPS) were implemented for large-scale remote sensing data production based on the effective management of data and workflow. As a consequence, the performance of MDCPS in experiments environment showed that those strategies could significantly enhance the efficiency of co-processing across multiple data centers.
机译:随着卫星传感器和日期中心的数量不断增加,管理和处理来自多个分布式源的大量遥感数据已成为一种趋势。但是,用于大规模遥感(RS)数据协作处理的多个卫星数据中心的组合仍然面临许多挑战。为了减少大量数据迁移并提高多数据中心协作过程的效率,本文介绍了大规模遥感数据生产的数据管理以及工作流管理的基础架构和服务。采用动态数据调度策略来减少数据请求和数据处理的重复。通过将遥感空间元数据存储库和Gfarm网格文件系统相结合,可以在协同处理中实现对原始数据,中间产品和最终产品的统一管理。另外,使用了多级任务订单存储库和工作流模板来自动构建生产工作流。借助特定的启发式调度规则,可以快速执行生产任务。最终,基于对数据和工作流程的有效管理,实现了用于大规模遥感数据生产的多数据中心协作处理系统(MDCPS)。结果,MDCPS在实验环境中的性能表明,这些策略可以显着提高跨多个数据中心的协同处理效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号