首页> 外文OA文献 >Design, fabrication and characterization of resonant waveguide grating based optical biosensors
【2h】

Design, fabrication and characterization of resonant waveguide grating based optical biosensors

机译:基于谐振波导光栅的光学生物传感器的设计,制造和表征

摘要

The absence of rapid, low cost and highly sensitive biodetection platform has hindered the implementation of next generation cheap and early stage clinical or home based point-of-care diagnostics. Label-free optical biosensing with high sensitivity, throughput, compactness, and low cost, plays an important role to resolve these diagnostic challenges and pushes the detection limit down to single molecule. Optical nanostructures, specifically the resonant waveguide grating (RWG) and nano-ribbon cavity based biodetection are promising in this context. The main element of this dissertation is design, fabrication and characterization of RWG sensors for different spectral regions (e.g. visible, near infrared) for use in label-free optical biosensing and also to explore different RWG parameters to maximize sensitivity and increase detection accuracy. Design and fabrication of the waveguide embedded resonant nano-cavity are also studied. Multi-parametric analyses were done using customized optical simulator to understand the operational principle of these sensors and more important the relationship between the physical design parameters and sensor sensitivities. Silicon nitride (SixNy) is a useful waveguide material because of its wide transparency across the whole infrared, visible and part of UV spectrum, and comparatively higher refractive index than glass substrate. SixNy based RWGs on glass substrate are designed and fabricated applying both electron beam lithography and low cost nano-imprint lithography techniques. A Chromium hard mask aided nano-fabrication technique is developed for making very high aspect ratio optical nano-structure on glass substrate. An aspect ratio of 10 for very narrow (~60 nm wide) grating lines is achieved which is the highest presented so far. The fabricated RWG sensors are characterized for both bulk (183.3 nm/RIU) and surface sensitivity (0.21nm/nm-layer), and then used for successful detection of Immunoglobulin-G (IgG) antibodies and antigen (~1μg/ml) both in buffer and serum. Widely used optical biosensors like surface plasmon resonance and optical microcavities are limited in the separation of bulk response from the surface binding events which is crucial for ultralow biosensing application with thermal or other perturbations. A RWG based dual resonance approach is proposed and verified by controlled experiments for separating the response of bulk and surface sensitivity. The dual resonance approach gives sensitivity ratio of 9.4 whereas the competitive polarization based approach can offer only 2.5. The improved performance of the dual resonance approach would help reducing probability of false reading in precise bio-assay experiments where thermal variations are probable like portable diagnostics.
机译:缺乏快速,低成本和高度灵敏的生物检测平台,阻碍了下一代廉价,早期临床或基于家庭的即时诊断服务的实施。具有高灵敏度,通量,紧凑性和低成本的无标记光学生物传感在解决这些诊断难题并将检测限降低到单个分子方面起着重要作用。在这种情况下,光学纳米结构,特别是基于共振波导光栅(RWG)和基于纳米带腔的生物检测技术是有前途的。本文的主要内容是针对不同光谱区域(例如可见光,近红外)的RWG传感器的设计,制造和表征,以用于无标记的光学生物传感,并探索不同的RWG参数以最大化灵敏度并提高检测精度。还研究了波导嵌入式谐振纳米腔的设计与制造。使用定制的光学模拟器进行了多参数分析,以了解这些传感器的工作原理,以及更重要的是物理设计参数与传感器灵敏度之间的关系。氮化硅(SixNy)是有用的波导材料,因为它在整个红外,可见光和部分UV光谱中具有宽泛的透明度,并且比玻璃基板具有更高的折射率。使用电子束光刻和低成本纳米压印光刻技术设计和制造玻璃基板上基于SixNy的RWG。开发了一种铬硬掩模辅助的纳米制造技术,用于在玻璃基板上制造非常高的长宽比的光学纳米结构。对于非常窄(〜60 nm宽)的光栅线,其纵横比为10,这是迄今为止最高的。制成的RWG传感器的特征在于体积(183.3 nm / RIU)和表面灵敏度(0.21nm / nm层),然后用于成功检测免疫球蛋白G(IgG)抗体和抗原(〜1μg/ ml)在缓冲液和血清中。诸如表面等离振子共振和光学微腔之类的广泛使用的光学生物传感器在将体响应与表面结合事件分离方面受到限制,这对于具有热或其他干扰的超低生物传感应用至关重要。提出并提出了一种基于RWG的双共振方法,并通过控制实验来验证,该方法用于分离体响应和表面灵敏度。双共振方法的灵敏度比为9.4,而基于竞争极化的方法只能提供2.5。双重共振方法的改进性能将有助于减少在精确的生物测定实验中错误读数的可能性,在这些实验中,可能发生热变化,如便携式诊断。

著录项

  • 作者

    Hossain Md Nazmul;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号