首页> 外文OA文献 >Novel smart modules for imaging, communications, and displays
【2h】

Novel smart modules for imaging, communications, and displays

机译:用于成像,通信和显示的新型智能模块

摘要

This dissertation proposes and demonstrates novel smart modules to solve challenging problems in the areas of imaging, communications, and displays. The smartness of the modules is due to their ability to be able to adapt to changes in operating environment and application using programmable devices, specifically, electronically variable focus lenses (ECVFLs) and digital micromirror devices (DMD). The proposed modules include imagers for laser characterization and general purpose imaging which smartly adapt to changes in irradiance, optical wireless communication systems which can adapt to the number of users and to changes in link length, and a smart laser projection display that smartly adjust the pixel size to achieve a high resolution projected image at each screen distance. The first part of the dissertation starts with the proposal of using an ECVFL to create a novel multimode laser beam characterizer for coherent light. This laser beam characterizer uses the ECVFL and a DMD so that no mechanical motion of optical components along the optical axis is required. This reduces the mechanical motion overhead that traditional laser beam characterizers have, making this laser beam characterizer more accurate and reliable. The smart laser beam characterizer is able to account for irradiance fluctuations in the source. Using image processing, the important parameters that describe multimode laser beam propagation have been successfully extracted for a multi-mode laser test source. Specifically, the laser beam analysis parameters measured are the M2 parameter, w0 the minimum beam waist, and zR the Rayleigh range. Next a general purpose incoherent light imager that has a high dynamic range (>100 dB) and automatically adjusts for variations in irradiance in the scene is proposed. Then a data efficient image sensor is demonstrated. The idea of this smart image sensor is to reduce the bandwidth needed for transmitting data from the sensor by only sending the information which is required for the specific application while discarding the unnecessary data. In this case, the imager demonstrated sends only information regarding the boundaries of objects in the image so that after transmission to a remote image viewing location, these boundaries can be used to map out objects in the original image. The second part of the dissertation proposes and demonstrates smart optical communications systems using ECVFLs. This starts with the proposal and demonstration of a zero propagation loss optical wireless link using visible light with experiments covering a 1 to 4 m range. By adjusting the focal length of the ECVFLs for this directed line-of-sight link (LOS) the laser beam propagation parameters are adjusted such that the maximum amount of transmitted optical power is captured by the receiver for each link length. This power budget saving enables a longer achievable link range, a better SNR/BER, or higher power efficiency since more received power means the transmitted power can be reduced. Afterwards, a smart dual mode optical wireless link is proposed and demonstrated using a laser and LED coupled to the ECVFL to provide for the first time features of high bandwidths and wide beam coverage. This optical wireless link combines the capabilities of smart directed LOS link from the previous section with a diffuse optical wireless link, thus achieving high data rates and robustness to blocking. The proposed smart system can switch from LOS mode to Diffuse mode when blocking occurs or operate in both modes simultaneously to accommodate multiple users and operate a high speed link if one of the users requires extra bandwidth. The last part of this section presents the design of fibre optic and free-space optical switches which use ECVFLs to deflect the beams to achieve switching operation. These switching modules can be used in the proposed optical wireless indoor network. The final section of the thesis presents a novel smart laser scanning display. The ECVFL is used to create the smallest beam spot size possible for the system designed at the distance of the screen. The smart laser scanning display increases the spatial resoluti on of the display for any given distance. A basic smart display operation has been tested for red light and a 4X improvement in pixel resolution for the image has been demonstrated.
机译:本文提出并演示了新颖的智能模块,以解决成像,通信和显示领域的难题。模块的灵巧性是由于它们能够使用可编程设备(特别是电子可变焦距镜头(ECVFL)和数字微镜设备(DMD))适应操作环境和应用程序的变化的能力。拟议的模块包括用于智能地适应辐照度变化的用于激光表征和通用成像的成像器,可以适应用户数量和链路长度变化的光学无线通信系统,以及用于智能调整像素的智能激光投影显示器尺寸以在每个屏幕距离上获得高分辨率的投影图像。论文的第一部分首先提出了使用ECVFL创建相干光的新型多模激光束表征器的建议。该激光束表征器使用ECVFL和DMD,因此不需要光学组件沿光轴的机械运动。这减少了传统激光束表征器的机械运动开销,从而使该激光束表征器更加准确和可靠。智能激光束表征器能够解决光源中的辐照度波动。使用图像处理,已经成功地提取了描述多模激光束传播的重要参数用于多模激光测试源。具体而言,测得的激光束分析参数为M2参数,w0为最小束腰,zR为瑞利范围。接下来,提出了一种通用的非相干光成像器,该成像器具有很高的动态范围(> 100 dB),并且可以根据场景中的辐照度变化进行自动调整。然后展示了一种数据有效的图像传感器。这种智能图像传感器的想法是通过仅发送特定应用所需的信息,同时丢弃不必要的数据,从而减少从传感器传输数据所需的带宽。在这种情况下,演示的成像器仅发送有关图像中对象边界的信息,以便在传输到远程图像查看位置后,这些边界可用于映射原始图像中的对象。论文的第二部分提出并演示了使用ECVFL的智能光通信系统。首先,提出并演示了使用可见光的零传播损耗光学无线链路,并进行了1至4 m范围的实验。通过针对该有向视线链路(LOS)调整ECVFL的焦距,可以调整激光束传播参数,以便接收器针对每个链路长度捕获最大的发射光功率。节省功率预算可实现更长的链路范围,更好的SNR / BER或更高的功率效率,因为更多的接收功率意味着可以降低发射功率。此后,提出并使用与ECVFL耦合的激光器和LED提出了智能双模光学无线链路,并首次展示了高带宽和宽波束覆盖的特征。该光学无线链路将上一部分中的智能定向LOS链路的功能与漫射光学无线链路相结合,从而实现了高数据速率和对阻塞的鲁棒性。提出的智能系统可以在发生阻塞时从LOS模式切换到漫反射模式,或者在两种模式下同时运行以容纳多个用户并在其中一个用户需要额外带宽的情况下运行高速链路。本部分的最后一部分介绍了光纤和自由空间光开关的设计,这些开关使用ECVFL使光束偏转以实现开关操作。这些交换模块可用于建议的光无线室内网络。论文的最后一部分提出了一种新颖的智能激光扫描显示器。 ECVFL用于为在屏幕远处设计的系统创建可能的最小束斑尺寸。对于任何给定的距离,智能激光扫描显示器都会增加显示器的空间分辨率。已针对红光测试了基本的智能显示操作,并且已证明该图像的像素分辨率提高了4倍。

著录项

  • 作者

    Marraccini Philip John;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类
  • 入库时间 2022-08-20 20:17:16

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号