首页> 外文OA文献 >Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models
【2h】

Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models

机译:非线性可分离离散决策模型的基于熵的优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper develops a new way to help solve difficult linear and nonlinear discrete-optimization decision models more efficiently by introducing a problem-difficulty metric that uses the concept of entropy frominformation theory. Our entropy metric is employed to devise rules for problem partitioning within an implicit enumeration method, where branching is accomplished based on the subproblem complexity. The only requirement for applying our metric is the availability of (upper) bounds on branching subproblems, which are often computed within most implicit enumeration methods such as branch-and-bound (or cutting-plane-based) methods. Focusing on problems with a relatively small number of constraints, but with a large number of variables, we develop a hybrid partitioning and enumeration solution scheme by combining the entropic approach with the recently developed improved surrogate constraint (ISC) method to produce the new method we call ISCENT. Our computational results indicate that ISCENT can be an order of magnitude more efficient than commercial solvers, such as CPLEX, for convex instances with no more than eight constraints. Furthermore, for nonconvex instances, ISCENT is shown to be significantly more efficient than other standard global solvers.
机译:本文提出了一种新方法,可以通过引入利用信息理论中的熵概念的问题-难度度量来更有效地解决困难的线性和非线性离散优化决策模型。我们的熵度量用于设计隐式枚举方法中问题划分的规则,其中基于子问题的复杂性完成分支。应用我们的度量标准的唯一要求是分支子问题的(上限)可用性,这通常是在大多数隐式枚举方法(例如分支定界(或基于切割平面)的方法)中计算的。针对具有较少约束但具有大量变量的问题,我们通过将熵方法与最近开发的改进的替代约束(ISC)方法相结合,开发了一种混合分区和枚举解决方案,以产生新的方法。致电ISCENT。我们的计算结果表明,对于不超过8个约束的凸实例,ISCENT的效率要比CPLEX等商业求解器高一个数量级。此外,对于非凸实例,ISCENT被证明比其他标准全局求解器效率更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号