首页> 外文OA文献 >Faster Adaptive Network Based Fuzzy Inference System
【2h】

Faster Adaptive Network Based Fuzzy Inference System

机译:基于快速自适应网络的模糊推理系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It has been shown by Roger Jang in his paper titled "Adaptive-network-based fuzzy inference systems" that the Adaptive Network based Fuzzy Inference System can model nonlinear functions, identify nonlinear components in a control system, and predict a chaotic time series. The system use hybrid-learning procedure which employs the back-propagation-type gradient descent algorithm and the least squares estimator to estimate parameters of the model. However the learning procedure has several shortcomings due to the fact that *There is a harmful and unforeseeable influence of the size of the partial derivative on the weight step in the back-propagation-type gradient descent algorithm. *In some cases the matrices in the least square estimator can be ill-conditioned. *Several estimators are known which dominate, or outperform, the least square estimator. Therefore this thesis develops a new system that overcomes the above problems, which is called the "Faster Adaptive Network Fuzzy Inference System" (FANFIS). The new system in this thesis is shown to significantly out perform the existing method in predicting a chaotic time series , modelling a three-input nonlinear function and identifying dynamical systems. We also use FANFIS to predict five major stock closing prices in New Zealand namely Air New Zealand "A" Ltd., Brierley Investments Ltd., Carter Holt Harvey Ltd., Lion Nathan Ltd. and Telecom Corporation of New Zealand Ltd. The result shows that the new system out performed other competing models and by using simple trading strategy, profitable forecasting is possible.
机译:Roger Jang在其题为“基于自适应网络的模糊推理系统”中的研究表明,基于自适应网络的模糊推理系统可以对非线性函数进行建模,识别控制系统中的非线性组件并预测混沌时间序列。该系统使用混合学习过程,该过程采用反向传播型梯度下降算法和最小二乘估计器来估计模型的参数。然而,由于以下事实,该学习过程存在一些缺点:*在反向传播型梯度下降算法中,偏导数的大小对权重步长具有有害和不可预见的影响。 *在某些情况下,最小二乘估计量中的矩阵可能会变差。 *已知有几个估计器在最小二乘估计器中占主导或优于。因此,本文开发了一种克服上述问题的新系统,称为“快速自适应网络模糊推理系统”(FANFIS)。研究表明,该新系统在预测混沌时间序列,建模三输入非线性函数和识别动力学系统方面明显优于现有方法。我们还使用FANFIS来预测新西兰的五个主要股票收盘价,即新西兰航空“ A”有限公司,Brierley投资有限公司,Carter Holt Harvey有限公司,Lion Nathan有限公司和新西兰电信公司。结果显示新系统可以执行其他竞争模型,并且通过使用简单的交易策略,可以实现盈利预测。

著录项

  • 作者

    Weeraprajak Issarest;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号