首页> 外文OA文献 >Spatio-Temporal Filtering of the EEG via Neural Network Based Multireference Adaptive Noise Cancelling
【2h】

Spatio-Temporal Filtering of the EEG via Neural Network Based Multireference Adaptive Noise Cancelling

机译:基于神经网络的多参考自适应降噪对脑电的时空滤波

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A system is proposed which enhances transient nonstationaritiesand, in particular, epileptiform discharges in the EEG. It is based around the technique of multireferenceadaptive noise cancelling (MRANC) which attenuates the background EEG on a primary channel by using spatial andtemporal information from adjacent channels in the multichannel EEG recording. This process has beenimplemented by means of a 3-layer perceptron artificial neuralnetwork trained by a backpropagation algorithm. System performance was measured as the percentage increasein signal-to-noise ratio (SNR) of predetermined epileptiformdischarges in recorded EEG segments. The results obtained show that, due to the nonlinear nature of the artificial neural network, the improvement in SNR is significant when comparedto the performance of MRANC utilising a linear model. MRANC is proposed as the first stage of a neural networkbased multi-stage system to detect epileptiform discharges in theinterictal EEG for the diagnosis of epilepsy.
机译:提出了一种增强瞬态非平稳性,特别是增强EEG中癫痫样放电的系统。它基于多参考自适应噪声消除(MRANC)技术,该技术通过使用来自多通道EEG记录中相邻通道的空间和时间信息来衰减主通道上的背景EEG。该过程已经通过由反向传播算法训练的3层感知器人工神经网络来实现。以记录的EEG段中预定癫痫状放电的信噪比(SNR)的百分比增加来衡量系统性能。所得结果表明,由于人工神经网络的非线性特性,与使用线性模型的MRANC性能相比,SNR的改善非常显着。提出将MRANC作为基于神经网络的多阶段系统的第一阶段,以检测间质EEG中的癫痫样放电以诊断癫痫。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号