首页> 外文OA文献 >Detonation modelling of non-ideal high explosives
【2h】

Detonation modelling of non-ideal high explosives

机译:非理想高爆炸药的爆轰模拟

摘要

High explosives (HE) are used in many fields where the energy liberated by the combustion process is used to perform useful work. High explosives normally burn via a detonation; a supersonic wave consisting of a shock wave coupled to chemical energy release. Detonations in conventional HE (CHE) propagate with a typical velocity of 6 - 8 km/s. Insensitive HE (IHE) and non-ideal HE (NIHE) are of particular interest as they areharder to initiate and thus safer to store and transport. Detonations in IHEs and NIHEs are characterized by longer reaction time and length scales than detonations in CHE. NIHEs are typically characterized by their porous, granular structure. Detonations in NIHEs have lower detonation velocities (4 - 6 km/s) than those in CHEs or IHEs due to their lower initial densities.The short time scales (O(ns ??? ??s)), length scales (O(??m ??? mm)) and the opaque nature of HEs and their products make experimental observations, required to calibrate detonation models for reaction flow modelling, challenging. Currently used reactive burn models assume a two component, mechanically equilibrated mixture of reactants and products. Individual components are modelled with an empirical equation of state (EOS). The set of relations which uniquely determine the mixture-averaged state in terms of the states of the mixture constituents, the mixture closure conditions, are also often of a pressure-temperature equilibrium form. The chemical reaction rate law(s) are mostly based on preconceptions of how a detonating HE burns.Typically, such engineering style models are complex and contain a large number of fitting parameters that are calibrated in some form to a limited set of experimental data. Minimal attention has been devoted to the physical and mathematical implications of the fitting process and reactive burn model structure (such as the choice of closure condition) to issues such as detonation stability and interacting oblique shock structure. For a well-posed reactive burn model, such properties should be understood.A majority of this thesis research is devoted to formulating and studying the shock and detonation properties of reactive burn models based on the use of stiffened-gas (SG) equations of state. A SG model allowsan appropriate initial sound speed of a material to be set, an important improvement over ideal gas models when applied to condensed phase reactive burn models. Due to its relative simplicity, a semi-analytical understanding of reactive burn models based on the use of SG EOS models for its constituent components can be obtained. Furthermore, changes in physical aspects of the reactive burn model, such as detonationstability and interacting oblique shock structure, with changes in calibrated fitting parameters, can be better understood. In this context, we establish the ability of SG EOS models to reasonably formulate a reactive burn model for the IHE PBX 9502. The model is designed to capture the fast and slow reaction stages inherent in PBX 9502 detonation using a two-stage reaction model. Different mixture closure conditions are examined, namely the classical pressure-temperature equilibrium assumption and a constant solid entropy closure condition. The stability characteristics of SG EOS based detonation models are examined in the context of varying EOS properties of the reactants and products, as well as closure conditions. The SG EOS based structure of oblique shock and detonation waves are also examined. Finally, in a separate exercise, the implemetation and results of a series of large cylindrical rate-stick experiments with the NIHE ammonium nitrate-fuel oil (ANFO) is reported. A detonation-shock-dynamics calibration to the detonation front curvature data obtained from experiments is also presented.
机译:高炸药(HE)用于许多领域,在这些领域中,燃烧过程释放出的能量被用于执行有用的工作。高爆炸药通常通过爆炸燃烧;由与化学能释放耦合的冲击波组成的超声波。常规HE(CHE)中的爆炸以6-8 km / s的典型速度传播。不敏感的HE(IHE)和非理想的HE(NIHE)特别令人关注,因为它们更难引发,因此更安全地存储和运输。与CHE中的爆炸相比,IHE和NIHE中的爆炸具有更长的反应时间和更长的尺度。 NIHE通常以其多孔的颗粒状结构为特征。由于其初始密度较低,NIHE的爆炸速度比CHEs或IHE的爆炸速度低(4-6 km / s)。短时间标度(O(ns ??? s)),长度标度(O(以及HEs及其产品的不透明特性使实验观测成为可能,这是校准用于反应流模型的爆震模型所必需的。当前使用的反应性燃烧模型假设有两个成分,即反应物和产物的机械平衡混合物。使用经验状态方程(EOS)对各个组件建模。根据混合物成分的状态,混合物封闭条件唯一地确定混合物平均状态的一组关系通常也具有压力-温度平衡形式。化学反应速率定律主要基于爆炸性HE燃烧的先入之见。通常,此类工程样式模型很复杂,并且包含大量拟合参数,这些参数已以某种形式针对有限的实验数据进行了校准。对于拟合过程和反应性燃烧模型结构(例如,闭合条件的选择)的物理和数学含义(例如爆破稳定性和相互作用的倾斜冲击结构)的关注最小。对于状态良好的反应性燃烧模型,应该了解这种性质。本论文的大部分研究致力于基于状态硬化气体(SG)方程的公式化和研究反应性燃烧模型的冲击和爆轰性质。 。 SG模型允许设置材料的适当初始声速,这是在将理想气体模型应用于冷凝相反应性燃烧模型时的重要改进。由于其相对简单,因此可以基于对SG EOS模型的构成成分的使用来获得对反应性燃烧模型的半解析理解。此外,可以更好地理解反应性燃烧模型的物理方面的变化,例如爆震稳定性和相互作用的倾斜冲击结构,以及标定的拟合参数的变化。在这种情况下,我们建立了SG EOS模型为IHE PBX 9502合理制定反应燃烧模型的能力。该模型旨在使用两阶段反应模型来捕获PBX 9502爆炸固有的快,慢反应阶段。研究了不同的混合物封闭条件,即经典的压力-温度平衡假设和恒定的固体熵封闭条件。在反应物和产物的EOS性质以及封闭条件变化的情况下,对基于SG EOS的爆炸模型的稳定性特征进行了检查。还研究了基于SG EOS的倾斜冲击波和爆轰波的结构。最后,在一个单独的练习中,报告了使用NIHE硝酸铵-燃料油(ANFO)进行的一系列大型圆柱比率测试的实现和结果。还提出了从实验获得的爆震前曲率数据的爆震动力学校准。

著录项

  • 作者

    Kiyanda Charles B.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号