首页> 外文OA文献 >A pulsed laser loading technique for controlled dynamic loading of nanostructred materials
【2h】

A pulsed laser loading technique for controlled dynamic loading of nanostructred materials

机译:用于纳米结构材料受控动态加载的脉冲激光加载技术

摘要

This thesis presents an improved laser loading technique for controlling and calibrating the stress waves created from this ultra-high loading rate technique. In the high-power pulsed laser loading technique, a laser produced compressive stress pulse passes through a substrate and reflects at a traction free surface as a tensile wave of opposite sign and direction. During the reflection process the traction free surface moves out-of-plane, allowing for measurement of surface displacement that can be related to the stress wave profile through the use of one-dimensional wave mechanics. In this work we improved upon this traditional pulsed laser loading technique by adding a set of optical components that can control the laser power deposited onto the sample down to 2% (of full power) increments. We also performed parametric studies that precisely quantified the resulting laser loading pulse based on experimental parameters such as the energy absorbing and the confining layer thicknesses. (Both these parameters are aspects of the layered substrate sample used to generate the stress wave.) Through the testing of precisely manufactured calibration samples with aluminum energy absorbing layers of 500 nm and waterglass confining layers of 7.62 ??m, which were found to be the best combinations of these thicknesses, stress wave profiles are obtained over a nearly continuous laser energy spectrum at the 2% power increments. Repeatable stress wave profiles showing consistent rise times and decay times were obtained at the selected energy levels. The stress wave profile peaks that were measured ranged from 1101.3 MPa ?? 270 MPa to 1731.3 MPa ??237 MPa, as the laser power varied from 30% to 50% of peak. Below 30% laser power no analyzable signal was obtained, and above 50% power the Si substrates failed at every loading. With the improved methodology developed in this work it will be possible to employ the laser loading power as a calibration for the resulting stress wave in each case, and therefore use calibrated curves as input to numerical simulations.
机译:本文提出了一种改进的激光加载技术,用于控制和校准由这种超高加载速率技术产生的应力波。在大功率脉冲激光加载技术中,激光产生的压缩应力脉冲穿过基板,并在牵引自由表面反射为符号和方向相反的拉伸波。在反射过程中,无牵引表面会移出平面,从而可以通过使用一维波力学来测量可能与应力波轮廓有关的表面位移。在这项工作中,我们通过添加一组光学组件来改进这种传统的脉冲激光加载技术,该组件可以将沉积在样品上的激光功率控制在2%(全功率)的增量范围内。我们还进行了参数研究,根据实验参数(例如能量吸收和限制层厚度)精确地量化了产生的激光负载脉冲。 (这两个参数都是用于产生应力波的层状衬底样品的各个方面。)通过对精确制造的校准样品进行测试,发现该校准样品具有500 nm的铝能量吸收层和7.62Ωm的水玻璃限制层。这些厚度的最佳组合是在功率为2%的情况下在几乎连续的激光能谱上获得应力波曲线的。在选定的能级下获得了显示一致的上升时间和衰减时间的可重复应力波曲线。测得的应力波轮廓峰范围为1101.3 MPa? 270 MPa至1731.3 MPa≤237 MPa,因为激光功率从峰值的30%到50%不等。低于30%的激光功率,无法获得可分析的信号,而高于50%的功率,硅基板在每次加载时都会失效。通过在这项工作中开发出改进的方法,将有可能在每种情况下利用激光负载功率作为对所得应力波的校准,因此可以将校准曲线用作数值模拟的输入。

著录项

  • 作者

    Kingstedt Owen T.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号