首页> 外文OA文献 >Nonlinear electrokinetic transport and its applications under combined AC and DC fields in micro/nanofluidic interface devices
【2h】

Nonlinear electrokinetic transport and its applications under combined AC and DC fields in micro/nanofluidic interface devices

机译:非线性电动传输及其在微/纳流体界面装置交流和直流电场联合作用下的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The integration of micro/nanofluidic devices led to many interesting phenomena and one of the most important and complex phenomenon among them is concentration polarization. In this thesis, we provide new physical insights in micro/nanofluidic interface devices on the application of AC and DC electric fields. By performing detailed numerical simulations based on coupled Poisson, Nernst???Planck, and incompressible Navier???Stokes equations, we discuss the electrokinetic transport and other hydrodynamic effects under the application of combined AC and DC electric fields for different nondimensional EDL thickness and nanochannel wall surface charge density. We understand that for a highly ion???selective nanochannel, the application of combined AC/DC electric field, at amplitudes greater than the DC voltage and at low Strouhal number, results in large dual concentration polarizationregions (with unequal lengths) at both the micro/nanofluidic interfaces due to large andunequal voltage drops at these junctions. The highly nonlinear potential distribution gives rise to an electric field and body force that changes the electrokinetic fluid velocity from that obtained on the application of only a DC source. With the understanding of nonlinear electrokinetic transport under combined AC/DC fields, we propose a novel technique of increasing the product concentration of an enzymatic reaction inside the nanofluidic channel.
机译:微/纳米流体装置的集成导致许多有趣的现象,其中最重要和最复杂的现象之一就是浓度极化。在本文中,我们将为微/纳米流体接口设备在交流和直流电场应用方面提供新的物理见解。通过基于耦合的Poisson,Nernst ??? Planck和不可压缩的Navier ??? Stokes方程进行详细的数值模拟,我们讨论了在交流电和直流电联合电场对不同无量纲EDL厚度和纳米通道壁表面电荷密度。我们了解到,对于高度离子选择性的纳米通道,在大于直流电压的振幅和较低的Strouhal数下,施加组合的AC / DC电场会在两个方向上产生较大的双浓度极化区域(长度不相等)。微/纳流体界面,因为这些结处的电压降较大且不相等。高度非线性的电势分布会产生电场和体力,从而改变电动流体的速度,与仅使用直流电源时获得的速度不同。通过了解在组合的AC / DC场下的非线性电动迁移,我们提出了一种增加纳米流体通道内酶促反应产物浓度的新技术。

著录项

  • 作者

    Nandigana Vishal;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号