首页> 外文OA文献 >Dynamic and quasi-static contact and scratch analysis of micro-nanoscale thin solid films with application to magnetic storage hard disk drives
【2h】

Dynamic and quasi-static contact and scratch analysis of micro-nanoscale thin solid films with application to magnetic storage hard disk drives

机译:微纳米薄固体薄膜的动态和准静态接触和划痕分析及其在磁存储硬盘驱动器中的应用

摘要

With current demand for decreased size of micro/nanoscale systems, coupled with increased mobility, critical understanding of the ensuing contact or impact related behavior of thin solid films used in these systems is of paramount importance for improved design and reliability. In modern micro/nanodevice technologies significant emphasis has to be placed on the design of thin-films which can provide the required contact and scratch resistance. To aid this endeavor, scientific studies of the contact and scratch processes in these systems, both static and dynamic are needed to provide the tools necessary to help the advancement of these technologies. One such problem is the impact contact or quasi-static contact and scratch of the slider and disk in magnetic storage hard disk drives (HDD). Similar contact problems are encountered during the operation of other micromechanical systems like RF-MEMS switches where surface damage is observed after cyclic contact. One of the most critical elements of multilayer contact analysis is proper determination of the nanomechanical properties of each thin-film on the multilayer system. In the first part of this work the method of determining the mechanical properties using the Oliver and Pharr (O-P) nanoindentation technique is described. For nanometer sized thin-films where the O-P technique gives incorrect results, an improved method is used. Later a dimensional analysis-based method to obtain the mechanical properties from the nanoindentation data is implemented for magnetic storage films. A direct comparison of the properties obtained from conventional O-P nanoindentation technique to this new technique is presented. In the second part of this work, the effect of dynamic contact or impact on multilayer thin films specific to magnetic storage hard disk drives is presented. Since there are no impact models available for multilayer thin films in the literature, a new contact mechanics-based (CM) semi-analytical model of a rigid sphere (representing a slider corner) impacting an elastic-plastic (E-P) multilayer thin-film half-space was proposed for the first time to examine the potential damage to a magnetic storage head disk interface (HDI). A dynamic 3D finite element analysis (FEA) model was also developed to examine the impact damage in more detail and validate the impact model. To characterize the plastic deformation and frictional energy losses associated with the impact damage, a comprehensive oblique elastic impact coefficient of restitution (COR) model was proposed for elastic-plastic impacts for the first time and validated using FEA. A method to decouple the oblique impact parameters into normal impact COR and tangential impact COR was formulated. Since, in microsystems, the geometry of the impacting bodies is not limited to spherical bodies, a new contact mechanics-based (CM) model of a rigid cylinder with a finite length impacting an elastic-plastic homogeneous disk was also proposed and includes a novel method of estimating the residual depth after impact. Based on elastic unloading, an improved coefficient of restitution model was also proposed. This new impact model was applied to study a practical case of a cylindrical feature on the slider of a magnetic storage hard disk drive impacting the disk to predict various critical impact contact parameters. The CM model was validated using a plane strain FEA-based model and it was found that a cylindrical feature with longer length results in a substantial alleviation of impact damage.The final part of this work involved the investigation of the performance of thin-film multilayers while under the influence of much milder quasi-static contact scratch. A 2D plane strain FEA model of a rigid cylinder sliding over a multilayered thin-film half space was developed. The effects of different contact parameters such as applied normal load, friction coefficient and radius of curvature of the cylinder on the critical stresses in the multilayer system were analyzed. Later, for direct experimental comparison a full-blown 3D quasi-static FEA-based nanoscratch model of the multilayer thin-film system was also developed. The FEA scratch results were compared to nanoscratch experiments performed on actual magnetic disks. Consequently, the 3D FEA scratch model was used to quantitatively correlate the subsurface plastic deformation to the magnetic erasures typically found in HDDs due to scratch for the very first time.
机译:随着当前对减小微米/纳米级系统尺寸的需求以及增加的迁移率,对于在这些系统中使用的固体薄膜的随之而来的接触或冲击相关行为的严格理解对于改善设计和可靠性至关重要。在现代的微/纳米器件技术中,必须将重点放在可提供所需的接触和耐刮擦性的薄膜设计上。为了帮助实现这一目标,需要对这些系统中的接触和刮擦过程进行静态和动态的科学研究,以提供有助于改善这些技术的必要工具。这样的问题之一是磁存储硬盘驱动器(HDD)中滑块和磁盘的冲击接触或准静态接触以及刮擦。在其他微机械系统(例如RF-MEMS开关)的操作过程中会遇到类似的接触问题,在这种情况下,循环接触后会发现表面损坏。多层接触分析的最关键要素之一是正确确定多层系统上每个薄膜的纳米机械性能。在这项工作的第一部分中,介绍了使用Oliver和Pharr(O-P)纳米压痕技术确定机械性能的方法。对于O-P技术给出错误结果的纳米尺寸薄膜,使用了一种改进的方法。后来,针对磁性存储薄膜实施了一种基于尺寸分析的方法,该方法可从纳米压痕数据获得机械性能。提出了从常规O-P纳米压痕技术与该新技术获得的性能的直接比较。在这项工作的第二部分中,介绍了动态接触或撞击对磁性存储硬盘驱动器特有的多层薄膜的影响。由于文献中没有多层薄膜可用的碰撞模型,因此,一种新的基于接触力学(CM)的半球形硬质球体模型(代表滑块角)会影响弹塑性(EP)多层薄膜首次提出使用半空间来检查对磁存储头磁盘接口(HDI)的潜在损坏。还开发了动态3D有限元分析(FEA)模型,以更详细地检查冲击损伤并验证冲击模型。为了表征与冲击损伤相关的塑性变形和摩擦能量损失,首次提出了一种用于弹塑性冲击的综合斜向弹性冲击恢复系数(COR)模型,并使用FEA对其进行了验证。提出了一种将斜向冲击参数解耦为法向冲击COR和切向冲击COR的方法。由于在微系统中,撞击体的几何形状不限于球形,因此,提出了一种新的基于接触力学(CM)的具有有限长度的撞击弹塑性均质圆盘的刚性圆柱体模型,该模型包括估计撞击后剩余深度的方法。基于弹性卸荷,提出了一种改进的恢复系数模型。这个新的冲击模型用于研究磁存储硬盘驱动器滑块上的圆柱特征撞击磁盘的实际情况,以预测各种关键的冲击接触参数。使用基于平面应变有限元分析的模型对CM模型进行了验证,发现具有较长长度的圆柱特征可显着减轻冲击损伤。本工作的最后部分涉及对薄膜多层膜性能的研究。而在更轻微的准静态接触刮擦的影响下。建立了在多层薄膜半空间上滑动的刚性圆柱的二维平面应变FEA模型。分析了不同的接触参数,例如所施加的法向载荷,摩擦系数和圆柱体的曲率半径,对多层系统中的临界应力的影响。后来,为了直接进行实验比较,还开发了多层薄膜系统的成熟的基于3D准静态FEA的纳米划痕模型。将FEA划痕结果与在实际磁盘上进行的纳米划痕实验进行了比较。因此,首次使用3D FEA刮擦模型将地下塑性变形与HDD中常见的磁擦定量相关联。

著录项

  • 作者

    Katta Raja Ramakanth;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号