首页> 外文OA文献 >Computational investigations of evolutionary transitions during development of the cellular translation and transcription machinery
【2h】

Computational investigations of evolutionary transitions during development of the cellular translation and transcription machinery

机译:细胞翻译和转录机制发展过程中进化过渡的计算研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Evolutionary transitions, times at which the behavior of evolution as a dynamic system dramatically changes, have occurred many times throughout the history of life on Earth. Carl Woese proposed that one such transition occurred at the root of the universal phylogenetic tree as life crossed a "Darwinian threshold". He theorized that evolution before the transition was communal, involving massive horizontal transfer of genes, whereas evolution afterward followed a more vertical path, similar to that observed today. Christian de Duve, under the term "singularities", similarly proposed a series of such transformational events in the history of life, including the development of a compartmentalized cellular nucleus. The work presented in this dissertation describes a series of computational studies designed to explore two of these transitions: the divergence of the cellular translation machinery in the three organismal lineages and the development of strategies for coping with the effects of spatial heterogeneity on gene regulation. Several new computational methodologies developed to address these questions are also presented.Ribosomal signatures, idiosyncrasies in the ribosomal RNA and/or proteins, are characteristic of the individual domains of life. Contributions from these signatures represent a significant fraction of the phylogenetic signal separating the three domains of life. The evolutionary origin of the signatures is analyzed and discussed, with the likely explanation being horizontal gene transfer within each organismal lineage following its divergence from the ancestral pool. Additional support for this hypothesis comes from a study of the phylogeny of the universal ribosomal proteins in Bacteria, where the large number of available genomes can help to decompose the complex history of these proteins.Transcription networks control the phenotype of modern cells, regulating the expression of proteins according to a genetic program. Bacteria and archaea couple transcription and translation in the cytoplasm, where the processes are subject to a great deal of spatial heterogeneity and the effects of the in vivo environment. Eukarya, on the other hand, have segregated transcription into a controlled compartment via the evolution of the nucleus. To understand the effect an evolutionary transition to complete segregation would have had, the effects of spatial heterogeneity are studied in a simple bacterial network, namely the regulatory network encoded in the lac operon. A novel method is presented for studying the effect of incorporating spatial information and molecular crowding into stochastic models of genetic circuits. By comparing to the well-stirred model, it is shown that spatial degrees of freedom and in vivo crowding can change both the noise and the mean behavior of a circuit. The spatial noise is a component of the extrinsic noise of a genetic system and bounds are placed on its contribution.Evolutionary transitions leave distinct signatures in the fabric of the cell. By studying these "molecular fossils" one can recover physical details about the transitions themselves as well as about the overall dynamics of the evolutionary process.
机译:在整个地球生命史中,进化转变是动态行为作为动态系统急剧变化的时期。卡尔·沃斯(Carl Woese)提出,随着生命越过“达尔文阈值”,这种过渡发生在通用系统树的根部。他认为,过渡之前的进化是公共的,涉及大规模的基因水平转移,而随后的进化则遵循更垂直的路径,类似于今天观察到的。克里斯蒂安·德·杜夫(Christian de Duve)用“奇异性”一词类似地提出了生命历史上的一系列此类转变事件,包括分隔细胞核的发育。本文介绍的工作描述了一系列计算研究,旨在探索其中的两种转变:三种生物谱系中细胞翻译机制的差异以及应对空间异质性对基因调控影响的策略的发展。还提出了解决这些问题的几种新的计算方法。核糖体特征是核糖体RNA和/或蛋白质中的特质,是生活各个领域的特征。这些特征的贡献代表了将生命的三个域分开的系统发育信号的很大一部分。对签名的进化起源进行了分析和讨论,可能的解释是每个生物谱系从祖先池中分离后,在每个生物谱系内进行水平基因转移。对这一假设的进一步支持来自对细菌中通用核糖体蛋白系统发育的研究,该研究中大量可用的基因组可以帮助分解这些蛋白的复杂历史。转录网络控制现代细胞的表型,调节表达根据遗传程序分析蛋白质。细菌和古细菌将细胞质中的转录和翻译耦合在一起,在此过程中,这些过程会受到很大的空间异质性和体内环境的影响。另一方面,Eukarya通过核的进化将转录分离到一个受控的区室中。为了理解进化到完全分离所产生的影响,在一个简单的细菌网络中研究了空间异质性的影响,即在lac操纵子中编码的调控网络。提出了一种新的方法来研究将空间信息和分子拥挤纳入遗传电路随机模型的影响。通过与良好搅拌的模型进行比较,可以看出空间自由度和体内拥挤可以改变电路的噪声和平均行为。空间噪声是遗传系统外在噪声的一个组成部分,其贡献受到限制。进化转变在细胞结构中留下了独特的特征。通过研究这些“分子化石”,可以恢复有关转变本身以及进化过程整体动力学的物理细节。

著录项

  • 作者

    Roberts Elijah;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号