首页> 外文OA文献 >Drifting-dipole noise model of nanometer MOSFETs for radio frequency integrated circuit design
【2h】

Drifting-dipole noise model of nanometer MOSFETs for radio frequency integrated circuit design

机译:用于射频集成电路设计的纳米mOsFET漂移偶极子噪声模型

摘要

Recent advances in nanometer CMOS scaling technology have made transistors capable of operating at hundreds of gigahertz, and opened a new era of high performance, low cost system-on-chip (SOC) designs for multi-gigabit-per-second wireless communication. However, such achievements also bring new challenges, particularly in modeling the physical behaviors of these super-scaled devices. Among these issues, it is found that the thermal-noise based formulation, such as the one in the widely accepted BSIM model, starts to deviate from the measured noise parameters of 120-nm CMOS devices. Therefore a new high-frequency noise model is required to allow first-pass radio frequency integrated circuit (RFIC) designs using state-of-the-art CMOS technologies.As the MOSFET is scaled down, the lateral field across the device channel becomes comparable to, or even exceeds, the vertical field. The device can no longer be considered as operating under equilibrium condition, and the thermal noise theory is no longer applicable to predicting its performance. This work describes a new noise formulation that takes into account high-field effects by using the concept of unrelaxable drifting dipoles. The proposed noise model is verified for single devices as well as for integrated circuits. Excellent fitting results are achieved for the measured noise parameters of single 120-nm MOSFETs. For circuit validation, two high-performance low-noise amplifiers (LNA) have been demonstrated. The 3.1???10.6 GHz Ultra Wideband LNA shows very low noise figures NF of 3.5 to 4.3 dB as well as superior input-referred third-order interception points IIP3 of 3.5 to 5.2 dBm across the design bandwidth. The other circuit, a 24-GHz LNA, achieves a gain of 19 dB, the highest gain published to date at this frequency band, while maintaining a comparative noise figure NF of 3.8 dB.
机译:纳米CMOS缩放技术的最新进展使晶体管能够工作在数百GHz的频率,并开创了高性能,低成本的片上系统(SOC)设计新时代,可实现每秒数千兆位的无线通信。但是,这些成就也带来了新的挑战,特别是在对这些超大规模设备的物理行为进行建模时。在这些问题中,发现基于热噪声的公式(例如在广泛接受的BSIM模型中的公式)开始偏离120 nm CMOS器件的测量噪声参数。因此,需要一种新的高频噪声模型来允许使用最先进的CMOS技术进行首过射频集成电路(RFIC)设计。随着MOSFET的缩小,器件通道上的横向场变得可比甚至超过垂直场该设备不再被视为在平衡条件下运行,并且热噪声理论不再适用于预测其性能。这项工作描述了一种新的噪声公式,该公式使用不可松弛的漂移偶极子概念考虑了高场效应。所提出的噪声模型已针对单个设备以及集成电路进行了验证。对于单个120 nm MOSFET的测量噪声参数,可获得出色的拟合结果。为了验证电路,已演示了两个高性能低噪声放大器(LNA)。 3.1?10.6 GHz超宽带LNA的噪声系数NF非常低,为3.5至4.3 dB,在整个设计带宽内,其出色的输入参考三阶拦截点IIP3为3.5至5.2 dBm。另一个电路是24 GHz LNA,增益为19 dB,是该频段迄今为止的最高增益,同时保持了3.8 dB的比较噪声系数NF。

著录项

  • 作者

    Nguyen Giang D.;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号