首页> 外文OA文献 >Model-based Strategies for Real-time Hybrid Testing
【2h】

Model-based Strategies for Real-time Hybrid Testing

机译:基于模型的实时混合测试策略

摘要

Experimental testing is an essential tool for understanding how structures respondto extreme events, thus allowing the design and construction of safer structures. Methodscurrently used to determine the behavior of structural systems subjected to dynamicloading are quasi-static, shaking-table, and hybrid (or pseudodynamic) testing. In hybridtesting, the dynamic response of the structure is calculated numerically on a computer,and then the restoring forces from the structure are obtained by applying the calculateddisplacements to a test specimen. The combination of physical testing with numericalsimulation provided by hybrid testing facilitates accurate and efficient testing of large andcomplex structural systems.Because conventional hybrid testing is executed at slow speeds, the method is notapplicable for structures with rate-dependent components (for example, devicesassociated with vibration control). To allow testing of such structures, researchers haveproposed a variation of the method called real-time hybrid testing in which theexperiment is executed in real time.Real-time hybrid testing is challenging because it requires guaranteed executionof each testing cycle within a fixed, small increment of time (typically less than 10 msec).Furthermore, unless appropriate compensation for time delays (from communication andcomputing time) and actuator dynamics is implemented, stability problems are likely tooccur during the experiment. Traditionally, researchers have lumped the effects of timedelays and actuator dynamics together and treated them as a constant time delay;techniques were then developed to compensate for this total time delay. However, thesetechniques only perform well when the delay is small compared to the fundamentalperiod of the structure.The focus of this report is to develop an approach for real-time hybrid testing thatuses model-based methods to compensate for time delays and actuator dynamics andcombines fast hardware and software (for high-speed computations and communication)with high performance hydraulic components.The studies presented in this report extend the capabilities of real-time hybridtesting by facilitating accurate testing of structural systems with larger naturalfrequencies (e.g., stiff structures or multi-degree-of-freedom systems) and handling largerdelays/lags which are typically associated with actuators with high force capacity.Furthermore, these studies demonstrate that real-time hybrid testing is an effective andpractical technique to evaluate the response of structures incorporating devices forpassive and semiactive structural control.
机译:实验测试是了解结构如何应对极端事件的重要工具,因此可以设计和建造更安全的结构。当前用于确定承受动态载荷的结构系统行为的方法是准静态,振动台和混合(或拟动力)测试。在混合测试中,在计算机上通过数值计算结构的动力响应,然后通过将计算出的位移应用于试样来获得结构的恢复力。物理测试与混合测试提供的数值模拟相结合,有助于对大型复杂结构系统进行准确而有效的测试。由于传统的混合测试以低速执行,因此该方法不适用于速率相关组件的结构(例如,与振动相关的设备)控制)。为了允许对这种结构进行测试,研究人员提出了一种称为实时混合测试的方法的变体,该方法可以实时执行实验。实时混合测试具有挑战性,因为它要求在固定的小增量内保证每个测试周期的执行时间(通常小于10毫秒)。此外,除非对时间延迟(来自通讯和计算时间)和执行器动力学进行适当的补偿,否则在实验过程中可能会出现稳定性问题。传统上,研究人员将时间延迟和执行器动力学的影响集中在一起,并将它们视为恒定的时间延迟;然后开发了弥补此总时间延迟的技术。但是,这些技术仅在与结构基本周期相比时延较小的情况下才能发挥良好的性能。本报告的重点是开发一种实时混合测试方法,该方法使用基于模型的方法来补偿时间延迟和执行器动力学并快速组合。具有高性能液压元件的硬件和软件(用于高速计算和通信)。本报告中的研究通过促进对具有较大自然频率(例如,刚性结构或多轴结构)的结构系统的精确测试,扩展了实时混合测试的功能。自由度系统)并处理通常与具有高推力能力的执行器相关的较大延迟/滞后。此外,这些研究表明,实时混合测试是一种评估包含被动和半主动装置的结构响应的有效且实用的技术结构控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号