首页> 外文OA文献 >Analysis and Optimization of a Dual-Load Vapor Compression Cycle Using Non-Azeotropic Refrigerant Mixtures
【2h】

Analysis and Optimization of a Dual-Load Vapor Compression Cycle Using Non-Azeotropic Refrigerant Mixtures

机译:非共沸制冷剂混合物双负载蒸汽压缩循环的分析与优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Some Non-Azeotropic Refrigerant Mixtures (NARMs) have been identified as potentialreplacements for R12 because of their low ozone depletion potential, low global warmingpotential and promising thermodynamic characteristics which could improve cycle efficiency. ANARM experiences a variable temperature glide during a constant-pressure phase changeprocess, making it a logical candidate for the two-temperature level cooling found inrefrigerators. There are two fundamental thermodynamic benefits to using a NARM over a purerefrigerant: 1) mixture and air-temperature glides can be better matched to improve the systemperformance, and 2) lower refrigerant temperatures can be achieved through the use ofintercooling with no decrease in evaporating pressure. The objective of this research was toinvestigate optimal pure refrigerant (R12 and R134a) and NARM (65% R22135% R123 and 80%R22120% R 141 b) refrigerator system configurations that minimized life-cycle cost.A two-evaporator flow loop was constructed to help develop an evaporator heat transfermodel and take NARM heat transfer data. For the mass flux range of 25-45 kglm2-s, the mixtureheat transfer coefficients were on the order of 50% less than those of R12. For higher massfluxes, the mixture coefficients rose rapidly, and approached the R12 values.A steady-state optimization model was used to minimize the life-cycle cost of eachsystem configuration studied. The optimized system configuration with the lowest life-cycle costwas a R221R123 system with both high and low-temperature intercoolers. This system used5.7% less energy, 23% more evaporator area, and its life-cycle cost was 2.1 % less than that of anoptimized R134a single-evaporator system. Furthermore, this system used 10.5% less energy,46% more evaporator area, and its life-cycle cost was 4.5% less than that of a modeled R12 basecasesystem. The optimized R221R123 systems performed better than the equivalent R221R141bsystems. The high-temperature intercooler mixture systems performed as well as the twointercooler systems. Mixture heat transfer coefficient enhancement had a limited impact on lifecyclecost.
机译:一些非共沸混合制冷剂(NARM)被确定为R12的潜在替代物,因为它们的臭氧消耗潜能低,全球升温潜能值低和有希望的热力学特性可以改善循环效率。在恒压相变过程中,ANARM经历了可变的温度滑移,使其成为冰箱中两温级冷却的合理候选者。使用NARM代替纯制冷剂有两个基本的热力学优势:1)混合物和空气温度滑移可以更好地匹配以改善系统性能,以及2)通过使用中冷可以实现较低的制冷剂温度,而不会降低蒸发压力。这项研究的目的是研究最佳的纯制冷剂(R12和R134a)和NARM(65%R22135%R123和80%R22120%R 141 b)冰箱系统配置,以最大程度地降低生命周期成本。构建了两个蒸发器的流量回路帮助开发蒸发器传热模型并获取NARM传热数据。对于25-45 kglm2-s的质量通量范围,混合物的传热系数比R12的传热系数小50%。对于更高的质量通量,混合系数迅速上升并接近R12值。稳态优化模型用于最小化所研究的每种系统配置的生命周期成本。具有最低生命周期成本的优化系统配置是具有高温和低温中间冷却器的R221R123系统。该系统使用的能源减少了5.7%,蒸发器面积增加了23%,其生命周期成本比经过优化的R134a单蒸发器系统降低了2.1%。此外,该系统使用的能源减少了10.5%,蒸发器面积增加了46%,其生命周期成本比模型R12基本案例系统减少了4.5%。经过优化的R221R123系统的性能优于同等的R221R141b系统。高温中冷器混合系统的性能与两个中冷器系统相同。混合传热系数的提高对生命周期成本的影响有限。

著录项

  • 作者

    Smith M.K.;

  • 作者单位
  • 年度 1993
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号