首页> 外文OA文献 >Development of implicit kinetic simulation methods, and their application to ion beam propagation in current and future neutralized drift compression experiments
【2h】

Development of implicit kinetic simulation methods, and their application to ion beam propagation in current and future neutralized drift compression experiments

机译:隐式动力学模拟方法的发展及其在当前和未来中和漂移压缩实验中离子束传播的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ion beams can be accelerated and focused to hit a target thus releasing high density power to achieve nuclear fusion. They can also be used to study phase transition from the solid to the Warm Dense Matter state. The Neutralized Drift Compression Experiment (NDCX) at the Lawrence Berkeley National Laboratory is being used to investigate the possibility of developing drivers for the heavy ion fusion reactors, and for Warm Dense Matter experiments. Because ion beams are positively charged, repulsive forces act on the beam ions. These electrostatic forces defocus the beam, increasing the beam size and degrading the applied compression and focus. Electrons are introduced via a preformed plasma to eliminate the electrostatic forces that defo- cus the beam in the NDCX. The spread of the background plasma electrons inside the beam, and the adjustment of their velocity to the beam propagation velocity is called neutralization process. Because collisions occur on time scales much larger than the time scales for the neutralization process, the plasma can be considered collision-less. Thus, the neutralization process is dominated by plasma-wave interactions instead of collisions, and the kinetic approach is required to model this phenomenon.In this dissertation, the neutralization process in the NDCX configuration is stud- ied. The collision-less kinetic equations of plasma are solved numerically using two implicit Particle-in-Cell methods. The implicit nature of the time-differenced gov- erning equations leads to unconditional numerical stability. The primary numerical scheme is based on an implicit moment Particle-in-Cell approach. It has been devel- oped for the electromagnetic case and implemented in a 3D, parallel code to study the neutralization process. In addition, a fully implicit Particle-in-Cell method to solve the particle and field equations has been also developed and implemented for a simple one dimensional, electrostatic configuration. The goal of the fully implicit scheme was to demonstrate that a fully implicit scheme can indeed converge as it has been a challenge. It has been demonstrated that fully implicit schemes (at least 1D, electrostatic configuration) can in fact converge. The schemes developed and implemented are used extensively to study the neutralization dynamics.The aim of this study is to analyze the dynamics that governs the neutralization process in the NDCX configuration. It has been found that the neutralization is a transient phenomenon, typically occurring on time scales of tens of plasma periods. During this transient, the ion beam undergoes through large electron oscillations. The oscillations are damped by a sheath. This sheath regulates the electron flux into and out of the beam, and because it opposes the electron oscillations, it also oscillates. The forward moving and oscillating sheath persists after the transient, and forms an oscillating shock at the front of the ion beam. The shock is in the form of a moving and oscillating discontinuity in the electric field, the charge density, and the electron average velocity.It has been found that the background plasma and beam densities influence the neutralization process, changing the properties of the sheath at the beam-plasma interface. The damping of the oscillations is important when the background plasma and beam densities are close in value, while it is weaker when the background plasma density is higher than the beam density. Moreover, the magnetic field does not have a significant effect on the ion beam neutralization process in the current and future NDCX configurations, and the simulations can be carried out in the electrostatic limit, achieving the same results as those obtained using electromagnetic simulations.A comparison of the implicit Particle-in-Cell methods with the explicitly time differenced Particle-in-Cell method shows that the implicit moment and the fully im- plicit Particle-in-Cell methods are on average 4 to 40 times computationally more expensive if the same simulation time step is used. Because the ion beam neutral- ization process in the NDCX occurs on the plasma period time scales and on the Debye length spatial scales, these scales need to be resolved to correctly describe the neutralization phenomenon. Because of these constraints on the time step and the grid spacing, the implicit Particle-in-Cell methods are here used on space and time scales where the explicit Particle-in-Cell method is numerically stable, hence denying the advantage that implicit methods have over explicit schemes. However, it is clear that implicit schemes are more efficient for problems that allow large time steps.
机译:离子束可以被加速并聚焦以击中目标,从而释放出高密度功率以实现核聚变。它们也可以用于研究从固态到热密物质状态的相变。劳伦斯伯克利国家实验室的中和漂移压缩实验(NDCX)被用于研究开发用于重离子聚变反应堆和热密物质实验的驱动器的可能性。由于离子束带正电,因此排斥力作用于离子束上。这些静电力使光束散焦,从而增加了光束尺寸并降低了施加的压缩和聚焦。电子通过预先形成的等离子体引入,以消除使NDCX中的光束聚焦的静电力。背景等离子体电子在电子束内部的扩散以及其速度对电子束传播速度的调整称为中和过程。因为碰撞发生在比中和过程的时间尺度大得多的时间尺度上,所以可以认为等离子体无碰撞。因此,中和过程以等离子波相互作用而不是碰撞为主导,并且需要用动力学方法来模拟这种现象。本文研究了NDCX配置下的中和过程。等离子体的无碰撞动力学方程使用两种隐式单元内粒子方法进行数值求解。时差控制方程的隐式性质导致无条件的数值稳定性。主要的数值方案基于隐式矩“单元中粒子”方法。它已开发用于电磁场合,并以3D并行代码实现,以研究中和过程。此外,还开发了一种完全隐式的单元内粒子方法来求解粒子和场方程,用于简单的一维静电配置。完全隐式方案的目标是证明完全隐式方案确实可以收敛,因为它一直是一个挑战。已经证明,完全隐式方案(至少一维,静电配置)实际上可以收敛。开发和实施的方案被广泛用于研究中和动力学。本研究的目的是分析控制NDCX配置中的中和过程的动力学。已经发现中和是一种瞬态现象,通常发生在数十个等离子体周期的时间尺度上。在此瞬变期间,离子束会经历大的电子振荡。振荡被护套衰减。该护套调节进入和离开电子束的电子通量,并且由于它抵抗电子振荡,因此也会振荡。在瞬变之后,向前运动和振荡的护套仍然存在,并在离子束的前面形成振荡冲击。电击的形式是电场,电荷密度和电子平均速度的运动和振荡不连续性,已发现背景等离子体和电子束密度会影响中和过程,从而改变鞘层的性能束-等离子体界面。当背景等离子体和束密度的值接近时,振荡的阻尼很重要,而当背景等离子体密度高于束密度时,振荡的阻尼则较弱。此外,在当前和将来的NDCX配置中,磁场对离子束中和过程没有显着影响,并且可以在静电极限下进行仿真,获得与使用电磁仿真获得的结果相同的结果。隐式单元内粒子方法与显式时差单元内粒子方法的比较表明,隐式矩和完全隐式单元内粒子方法在计算上平均要贵4至40倍。使用模拟时间步长。由于NDCX中的离子束中和过程是在等离子周期时间尺度和德拜长度空间尺度上发生的,因此需要解析这些尺度以正确描述中和现象。由于时间步长和网格间距的这些限制,隐式单元内粒子方法在空间和时间尺度上使用,其中显式单元内粒子方法在数值上是稳定的,因此否认了隐式方法具有以下优点:在明确的方案上。但是,很明显,对于允许大量时间步长的问题,隐式方案更为有效。

著录项

  • 作者

    Markidis Stefano;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号