首页> 外文OA文献 >Efficient Processing of Ad-Hoc Top-k Aggregate Queries in OLAP
【2h】

Efficient Processing of Ad-Hoc Top-k Aggregate Queries in OLAP

机译:在OLap中高效处理ad-Hoc Top-k聚合查询

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we develop a principled framework for efficient processing of ad-hoc top-k (ranking) aggregate queries in OLAP. Such queries provide the k groups with the highest aggregates to decision makers. Essential support of top-k aggregate queries is lacking in current RDBMSs, which process such queries in a naive and overkill materialize- group-sort scheme, therefore can be prohibitively inefficient. Our new framework is based on two fundamental properties, the Group-Ranking and Tuple-Ranking Principles. The principles dictate group-ordering and tuple-ordering requirement that together guide the query processor toward the optimal aggregate query processing. To realize the requirements, we propose a new execution model and address the challenges of implementing new query operators, enabling efficient top-k aggregate query plans that are both group- aware and rank-aware. The experimental study validates our framework by demonstrating orders of magnitude performance improvement in the new query plans, compared with the traditional approach.
机译:在本文中,我们开发了一种有效处理OLAP中的前top(排名)聚合查询的原则框架。这样的查询为决策者提供了k组最高的汇总。当前的RDBMS中缺少对top-k聚合查询的基本支持,该处理无法以幼稚的,过分的物化-组排序方案来处理此类查询,因此效率极低。我们的新框架基于两个基本属性,即群体排名原则和元组排名原则。该原则规定了组排序和元组排序要求,它们共同指导查询处理器朝着最佳的聚合查询处理方向发展。为了实现这些要求,我们提出了一个新的执行模型,并解决了实施新查询运算符的挑战,从而实现了高效的前k位聚合查询计划,该计划既可感知组又可感知等级。与传统方法相比,实验研究通过展示新查询计划中的性能改进数量级来验证我们的框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号