首页> 外文OA文献 >Use of Nano-Indentation and Nano-Scratch Techniques to Investigate Near Surface Material Properties Associated With Scuffing of Engineering Surfaces
【2h】

Use of Nano-Indentation and Nano-Scratch Techniques to Investigate Near Surface Material Properties Associated With Scuffing of Engineering Surfaces

机译:使用纳米压痕和纳米划痕技术研究与工程表面划伤相关的近表面材料特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Scuffing is a very complex process, without a clear understanding of the fundamental causes behind itsoccurrence. It is clear that there are many factors that affect this process, but it is only through obtaining an in-depthunderstanding of the actual conditions (i.e. chemical, topographical, mechanical, and microstructural analyses), thata fundamental cause can be determined. Most prior research has focused on examination of subsurface changes atthe micron level. Recent findings suggest that the most significant changes occur in the top 50 ??? 100 nm of thesurface, not at the micron level as previously suggested. The goal of this project is to substantiate this claim that themost significant changes occur in the top 50 ??? 100 nm, and to quantify the changes in material properties at thislevel. Microstructural analysis and nano-mechanical methods of determining thin film material properties are usedto accomplish these goals.The nano-mechanical methods that will be used in this work are nano-indentation and nano-scratchtechniques. These methods are routinely used in such applications as semi-conductors and magnetic storage harddisk drives. Applying these methods to engineering surfaces is anticipated to be somewhat difficult (and thus, thelack of published works in this area), due to significant roughness, non-homogeneous surfaces and inconsistentlayers of unknown and non-uniform thicknesses. Through careful examination and analysis of individual data, it isshown that these methods can in fact be applied to engineering surfaces.
机译:划伤是一个非常复杂的过程,没有清楚了解其发生的根本原因。显然有许多因素会影响此过程,但是只有通过对实际条件(即化学,形貌,机械和微观结构分析)进行深入了解,才能确定根本原因。先前的大多数研究都集中在检查微米级的地下变化。最近的发现表明,最显着的变化发生在前50位? 100 nm的表面,而不是以前建议的微米级别。该项目的目标是证实最显着的变化发生在前50位中的说法。 100 nm,并以此水平量化材料特性的变化。确定薄膜材料特性的微观结构分析和纳米机械方法被用来实现这些目标。将在这项工作中使用的纳米机械方法是纳米压痕和纳米划痕技术。这些方法通常用于半导体和磁存储硬盘驱动器等应用中。由于存在明显的粗糙度,不均匀的表面以及厚度未知和不均匀的不一致的层,预计将这些方法应用于工程表面会有些困难(因此,在该领域缺乏已发表的著作)。通过仔细检查和分析单个数据,可以证明这些方法实际上可以应用于工程表面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号