首页> 外文OA文献 >Analysis of performance of automatic target recognition systems
【2h】

Analysis of performance of automatic target recognition systems

机译:自动目标识别系统的性能分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An Automatic Target Recognition (ATR) system is a sensor which is usuallyable to recognize targets or objects based on gathered data. The applicationof automatic target recognition technology is a critical element of robotic warfare.ATR systems are used in unmanned aerial vehicles and cruise missiles.There are many systems which are able to collect data (e.g. radar sensor,electro-optic sensor, infra-red devices) which are commonly used to collectinformation and detect, recognise and classify potential targets. Despite significanteffort during the last decades, some problems in ATR systems havenot been solved yet.This Ph.D. tried to understand the variation of the information content intoan ATR system and how to measure as well as how to preserve informationwhen it passes through the processing chain because they have not beeninvestigated properly yet. Moreover the investigation focused also on thedefinition of class-separability in ATR system and on the definition of thedegree of separability. As a consequence, experiments have been performedfor understanding how to assess the degree of class-separability and how thechoice of the parameters of an ATR system can affect the final classifier performance(i.e. selecting the most reliable as well as the most informationiiiiipreserving ones).As results of the investigations of this thesis, some important results havebeen obtained: Definition of the class-separability and of the degree of classseparability(i.e. the requirements that a metric for class-separability hasto satisfy); definition of a new metric for assessing the degree of classseparability;definition of the most important parameters which affect theclassifier performance or reduce/increase the degree of class-separability (i.e.Signal to Clutter Ratio, Clutter models, effects of despeckling processing).Particularly the definition of metrics for assessing the presence of artefactsintroduced by denoising algorithms, the ability of denoising algorithms inpreserving geometrical features of potential targets, the suitability of currentmathematical models at each stage of processing chain (especially for cluttermodels in radar systems) and the measurement of variation of informationcontent through the processing chain are some of them most important issueswhich have been investigated.
机译:自动目标识别(ATR)系统是一种传感器,通常可根据收集的数据识别目标或物体。自动目标识别技术的应用是机器人作战的关键要素。ATR系统用于无人机和巡航导弹。有许多系统可以收集数据(例如雷达传感器,光电传感器,红外设备) ),通常用于收集信息以及检测,识别和分类潜在目标。尽管在过去的几十年中付出了巨大的努力,但ATR系统中的一些问题仍未解决。试图了解信息内容在ATR系统中的变化,以及在信息通过处理链时如何衡量以及如何保存信息,因为尚未对其进行适当的调查。此外,研究还集中在ATR系统中类可分离性的定义和可分离性程度的定义上。因此,进行了一些实验,以了解如何评估类的可分离性程度以及ATR系统参数的选择如何影响最终的分类器性能(即选择最可靠和信息量最大的分类器)。本文的研究结果得到了一些重要的结果:定义了类可分离性和类可分离性的程度(即类可分离性度量必须满足的要求);定义用于评估类可分性程度的新度量标准;定义影响分类器性能或降低/增加类可分性程度的最重要参数(即信号与杂波比,杂波模型,去斑点处理的效果)。定义用于评估由去噪算法引入的伪像的存在性的度量标准,去噪算法保留潜在目标的几何特征的能力,当前数学模型在处理链的每个阶段的适用性(尤其是雷达系统中的杂波模型)以及对变化的度量通过处理链获得的信息内容是其中一些最重要的问题,已经进行了调查。

著录项

  • 作者

    Marino G;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号