首页> 外文OA文献 >Multi-disciplinary preliminary design assessments of pusher counter-rotating open rotors for civil aviation
【2h】

Multi-disciplinary preliminary design assessments of pusher counter-rotating open rotors for civil aviation

机译:民用推进器反向旋转开放旋翼的多学科初步设计评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As a consequence of fuel cost escalation and increased stringent engine emissionregulations, interest in counter-rotating open rotor engines (CRORs) has beenrenewed. R&D efforts are currently ongoing to develop the technologies required toensure the appropriate levels of structural integrity, noise, vibrations and reliability.The assessment of the impact of the main low pressure preliminary design and controlparameters of CRORs on mission fuel burn, certification noise and emissions isnecessary to identify optimum design regions. These assessments aid thedevelopment process when compromises need to be performed as a consequence ofdesign, operational or regulatory constraints. These assessments are not possible withthe state-of-the-art aero-engine preliminary design simulation tools.Novel 0-D performance models for counter-rotating propellers (CRPs) and differentialplanetary gearboxes, as well as 1-D and 0-D performance models for counter-rotatingturbines (CRTs) were developed and verified using available data. These models wereused to create 0-D pusher geared (GOR) and direct drive (DDOR) open rotor engineperformance simulation modules allowing the independent definition of the design andoperation of each of the two counter-rotating parts of the CRP and CRT.A multi-disciplinary preliminary design simulation framework was built using the novelengine performance modules together with dedicated CROR aircraft performance,engine geometry and weight, gaseous emissions and certification noise simulationmodules. Design space exploration and trade-off studies were performed and minimumfuel burn design regions were identified for both the pusher GOR and DDOR. A 160PAX aircraft flying a business mission of 500 NM was chosen for these studies.Based on the assumptions made, the main conclusions of these studies are as follows.· Fuel burn reductions of ~1-2% are possible through optimised propeller control· The propeller diameter for minimum mission fuel burn lies between 4.26 and 4.7 m· The design nozzle pressure ratio for minimum mission fuel burn lies between 1.55and 1.6· CRPs with 13 or 14 blades per propeller provide minimum mission fuel burn· Increasing spacing between the propellers reduces noise significantly (~6 EPNdB foreach certification point) with a relatively small fuel burn penalty (~0.3-0.5%)· Relative to unclipped designs, 20% clipped CRPs reduce flyover noise by at least 2.5EPNdB and approach noise by at least 4.5 EPNdB. The corresponding fuel burnpenalty is ~2 % for a GOR and ~3.5% for a DDOR.· Sideline and flyover noise can be reduced by increasing the diameter of the CRP andappropriately controlling CRP rotational speeds. Approach noise can be reduced byeither reducing the diameters or the rotational speeds of the propellers.· The rotational speed of the forward propeller for minimum noise is higher than that forminimum mission fuel burn for all the studied CROR designs.· Regardless of clipping, reducing the rotational speed of the rear propeller relative tothe forward propeller reduces noise and, to a certain limit, also mission fuel burn.(further reductions in rotational speed would have an adverse effect on fuel burn)· An increase in the number of blades results in an increase in certification noise.The main recommendations for further work are as follows.· Integrating the 1-D CRT model with the 0-D DDOR performance model in order toassess the impact of different CRT design criteria at engine and mission levels· Developing preliminary design methods to account for changes in aircraft weight andaerodynamics due to changes in engine design and required cabin noise treatment.
机译:由于燃料成本的增加和严格的发动机排放法规的提高,人们对反向旋转的开放式转子发动机(CROR)产生了兴趣。目前正在进行研发工作,以开发确保适当水平的结构完整性,噪声,振动和可靠性所需的技术。有必要评估CROR的主要低压初步设计和控制参数对任务燃料燃烧,认证噪声和排放的影响以确定最佳的设计区域。当由于设计,运营或法规限制而需要折衷解决方案时,这些评估将有助于开发过程。最新的航空发动机初步设计仿真工具无法进行这些评估。新型0-D性能模型用于反向旋转螺旋桨(CRP)和差速行星齿轮箱以及1-D和0-D性能开发了反向旋转涡轮机(CRT)的模型,并使用可用数据进行了验证。这些模型用于创建0-D推进器齿轮传动(GOR)和直接驱动(DDOR)开放转子发动机性能模拟模块,从而可以独立定义CRP和CRT的两个反向旋转部件中每一个的设计和操作。使用新颖的发动机性能模块,以及专用的CROR飞机性能,发动机几何形状和重量,气体排放和认证噪声仿真模块,构建了学科初步设计仿真框架。进行了设计空间探索和权衡研究,并确定了推杆GOR和DDOR的最小燃油燃烧设计区域。这些研究选择了一架执行500海里飞行任务的160PAX飞机。基于所做的假设,这些研究的主要结论如下:·通过优化螺旋桨控制,燃油消耗可减少1-2%。用于最小任务燃油燃烧的螺旋桨直径在4.26和4.7 m之间·用于最小任务燃油燃烧的设计喷嘴压力比在1.55和1.6之间·每个螺旋桨具有13或14个叶片的CRP提供最小的任务燃油燃烧·增大螺旋桨间距减少显着降低噪音(每个认证点约为6 EPNdB),燃油消耗损失相对较小(〜0.3-0.5%)·相对于非限幅设计,限幅20%的CRP降低了飞越噪声至少2.5EPNdB,逼近噪声至少4.5 EPNdB 。对于GOR来说,相应的燃油消耗量为〜2%,对于DDOR而言,则为〜3.5%。·可以通过增加CRP的直径并适当控制CRP转速来降低副线和飞越噪声。通过减小螺旋桨的直径或减小螺旋桨的转速,可以减小进近噪声。·对于所有研究的CROR设计,前向螺旋桨的最小噪声转速都高于最小任务燃油消耗。后螺旋桨相对于前螺旋桨的转速降低了噪音,并且在一定程度上降低了燃料的燃烧。(进一步降低转速会对燃料燃烧产生不利影响)·叶片数量的增加会导致主要建议如下:·将一维CRT模型与0维DDOR性能模型集成在一起,以便评估不同CRT设计标准对发动机和任务级别的影响·进行初步设计解决因发动机设计变更和所需机舱噪声处理而导致的飞机重量和空气动力变化的方法。

著录项

  • 作者

    Bellocq Pablo;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号