首页> 外文OA文献 >An experimental investigation of the subsonic drag and pitching moment characteristics of slender cambered bodies with pointed noses and tails
【2h】

An experimental investigation of the subsonic drag and pitching moment characteristics of slender cambered bodies with pointed noses and tails

机译:尖头和尾巴的细长弯曲物体亚音速阻力和俯仰力矩特性的实验研究

摘要

It is known that supersonic aircraft are liable to possess some trimdrag under cruise conditions. Fuselage camber has been suggested as onemeans of reducing this component of the drag, and the purpose of thisinvestigation was to obtain quantitative data on the pitching momentincrements obtainable from fuselage camber and incidence, and the associatedincrements in fuselage drag.Lift, drag and moment measurements have been made on a body representativeof the fuselage of a supersonic transport aeroplane. The finenessratio of the body was 15:1, the cross-sectional area distribution beingof modified Sears-Haack form. Parabolic nose and tail camber was used,the nose and tail portions being made removable so that a variety ofdifferent configurations could be tested. The Reynolds number of thetests was 14.1 x 106 based on the length of the model, and the Mach numberwas 0.2. The tests were made with a transition wire attached to the modelat 10% of the length from the nose. A preliminary investigation indicatedthat the Reynolds number was probably sufficiently large to ensure thatthe results would give a good guide to the full scale characteristics.The experiments showed that nose camber produces a pitching momentincrement in very close agreement with the predictions of inviscid slenderbody theory. The increments in lift and drag, whilst not zero as predictedby inviscid theory, axe small. Tail camber on the other hand gives riseto much larger lift and drag increments, and the increment in pitchingmoment is quite different from that predicted by inviscid theory. In thepresent tests the pitching moment increment due to tail camber amounted toabout 10% of the theoretical value.The scope of the experiment was insufficient to answer the question“What is the optimum fuselage shape for minimum trim drag?" However, theindications are that an uncambered fuselage at incidence will provide agiven pitching moment for less drag than any cambered fuselage. Thishowever neglects the interference effects of the wing and tail unit on thefuselage, and of the fuselage on the wing and tail unit. For reasons of(i) tail clearance on take-off and landing, (ii) cockpit layout and view,and (iii) cabin layout, fuselages with camber may be required. Someindication of the fuselage drag penalties likely to be sustained by thesemodifications of the fuselage are given by the results of this experiment.
机译:众所周知,在巡航条件下,超音速飞机容易拥有一些纵倾。有人建议将机身外倾作为减少阻力的这一部分的手段,而本研究的目的是获得有关从机身外倾和入射角可获得的俯仰力矩增量以及机身阻力的相关增量的定量数据。是在代表超音速运输飞机机身的车身上制造的。主体的细度比为15:1,横截面积分布为改良的Sears-Haack形式。使用了抛物线形的鼻子和尾巴弯度,鼻子和尾巴的部分可拆卸,因此可以测试各种不同的配置。基于模型的长度,测试的雷诺数为14.1 x 106,马赫数为0.2。测试是在距鼻子10%的长度处将过渡线连接到模型上进行的。初步研究表明,雷诺数可能足够大,以确保结果能够为全面的特性提供良好的指导。实验表明,前弯角产生的俯仰力矩增量与无形细长体理论的预测非常接近。升力和阻力的增量虽然不像无形理论所预测的那样不为零,但是却很小。另一方面,尾巴外倾角会产生更大的升力和阻力增量,并且俯仰力矩的增量与无粘性理论所预测的完全不同。在目前的测试中,由于尾部弯度导致的俯仰力矩增量约为理论值的10%。实验的范围不足以回答“最小修剪阻力的最佳机身形状是什么?”的问题。相对于任何弧形机身,未弯曲的机身入射角可提供给定的俯仰力矩,从而减小阻力,但是忽略了机翼和尾翼单元对机身以及机身对机翼和尾翼单元的干扰影响。在起飞和着陆时,(ii)座舱的布局和视野,以及(iii)机舱的布局,可能需要采用具有外倾角的机身,这些改动可能会给机身阻力带来一些惩罚性指示。这个实验。

著录项

  • 作者

    Harris K. D.;

  • 作者单位
  • 年度 1958
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号