首页> 外文OA文献 >Probabilistic Monte-Carlo method for modelling and prediction of electronics component life
【2h】

Probabilistic Monte-Carlo method for modelling and prediction of electronics component life

机译:电子部件寿命建模和预测的概率蒙特卡罗方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Power electronics are widely used in electric vehicles, railway locomotive and new generation aircrafts. Reliability of these components directly affect the reliability and performance of these vehicular platforms. In recent years, several research work about reliability, failure mode and aging analysis have been extensively carried out. There is a need for an efficient algorithm able to predict the life of power electronics component. In this paper, a probabilistic Monte-Carlo framework is developed and applied to predict remaining useful life of a component. Probability distributions are used to model the component’s degradation process. The modelling parameters are learned using Maximum Likelihood Estimation. The prognostic is carried out by the mean of simulation in this paper. Monte-Carlo simulation is used to propagate multiple possible degradation paths based on the current health state of the component. The remaining useful life and confident bounds are calculated by estimating mean, median and percentile descriptive statistics of the simulated degradation paths. Results from different probabilistic models are compared and their prognostic performances are evaluated.
机译:电力电子技术广泛用于电动汽车,铁路机车和新一代飞机。这些组件的可靠性直接影响这些车辆平台的可靠性和性能。近年来,关于可靠性,故障模式和老化分析的若干研究工作已经广泛开展。需要一种能够预测电力电子部件寿命的有效算法。在本文中,开发了概率蒙特卡洛框架并将其应用于预测组件的剩余使用寿命。概率分布用于对组件的降级过程进行建模。使用最大似然估计来学习建模参数。通过模拟的方法进行了预测。蒙特卡洛模拟用于根据组件的当前健康状况传播多个可能的降级路径。剩余的使用寿命和置信区间是通过估算模拟退化路径的平均值,中位数和百分位数描述统计来计算的。比较来自不同概率模型的结果,并评估其预后表现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号