首页> 外文OA文献 >Pollution prevention in wastewater networks: development of a biological early warning device
【2h】

Pollution prevention in wastewater networks: development of a biological early warning device

机译:废水网络中的污染预防:开发生物预警装置

摘要

A biological early warning system (EWS) was developed to screen wastewatercontaining nitrification inhibitors and identify nitrifying bacteria activity reductionwithout relying on absolute values of sensor signals. To do so, numerous sensors wereevaluated using a tiered approach to aid the analysis and made it easier to convey thecurrent state of the technology. The research then produced a framework for thedevelopment of an EWS and the applicability of sensors to the wastewater matrix. Theresearch identified a need for the development of a strategy and guidance that can helpin the prevention and detection of nitrification inhibitors. Initial tests focussed on sewerbiofilm N2O emissions, however, despite average nitrification rates of 19.5 g-NH4+-N.m-2.d-1the response was unreliable due to inadequate control. To address this, acirculating floating bed biofilm reactor (CFBBR) was designed as a sidestream. TheCFBBR biofilm’s toxicity response was compared to the sewer biofilm, a 2850 mg.L-1MLSS culture and a 10.5 mg.L-1MLSS culture (with equivalent biomass concentrationto the CFBBR biofilm). The cultures responded differently with an inhibitory effectscale of Cu2+ > ATU > Ni2+ > Cr6+ for CFBBR biofilm, ATU > Cu2+ > Ni2+ > Cr6+ for2850 mg L-1MLSS, ATU > Ni2+ > Cr6+ > Cu2+ for 10.5 mg.L-1MLSS and ATU > Cu2+> Cr6+ > Ni2+ for sewer biofilm. This was firstly attributed to suspended growthnitrification stimulation by Cu2+ doses up to ~45 mg.L-1resulting in a lower inhibitoryeffect. Secondly, very high Cr6+ and Ni2+ doses were required for biofilm nitrificationinhibition, due to diffusion limitations and slow transport through cell membranes. TheCFBBR biofilm response to heavy metals was characterised through N2O and CO2spikes and a post shock emissions recovery period was observed with the trend Ni2+ >Cr6+ > Cu2+ . A 10 minute hydraulic retention time allowed quick detection and steadystate nitrification rates of 0.4 g-NH4+-N.m-2.d-1despite high organic loading rates.Additionally, a suspended growth based monitor (Nitritox) was assessed as an inletworks toxicity detector. Incorporation of a Nitritox with a CFBBR based sewer monitoroffered increased robustness over a CFBBR only system and was shown to be viablesystem in catchments >200,000 population equivalent. This information is useful towater utilities so that they can plan for and experiment with upset early warningprotocols. It is also useful to manufacturers as they can determine product performanceneeds.
机译:开发了生物预警系统(EWS)来筛选含硝化抑制剂的废水并确定硝化细菌活性的降低,而无需依赖传感器信号的绝对值。为此,使用分层方法对大量传感器进行了评估,以帮助进行分析,并使其更易于传达技术的当前状态。然后,研究为EWS的开发以及传感器对废水基质的适用性提供了框架。研究发现,需要制定策略和指导,以帮助预防和检测硝化抑制剂。最初的测试着重于下水生物膜的N2O排放,但是,尽管平均硝化速率为19.5 g-NH4 + -N.m-2.d-1,但由于控制不当,反应仍不可靠。为了解决这个问题,循环浮床生物膜反应器(CFBBR)被设计为侧流。将CFBBR生物膜的毒性反应与下水道生物膜,2850 mg.L-1MLSS培养物和10.5 mg.L-1MLSS培养物(生物量浓度与CFBBR生物膜相当)进行了比较。对于CFBBR生物膜,培养物对Cu2 +> ATU> Ni2 +> Cr6 +,ATU> Cu2 +> Ni2 +> Cr6 +对于2850 mg L-1MLSS,ATU> Ni2 +> Cr6 +> Cu2 +对于10.5 mg.L-1MLSS和ATU> Cu2 +> Cr6 +> Ni2 +用于下水道生物膜。这首先归因于Cu2 +剂量高达〜45 mg的悬浮生长硝化刺激。L-1产生较低的抑制作用。其次,由于扩散限制和通过细胞膜的缓慢运输,生物膜硝化抑制需要非常高的Cr6 +和Ni2 +剂量。 CFBBR生物膜对重金属的响应通过N2O和CO2峰值来表征,并观察到震后排放恢复期,趋势为Ni2 +> Cr6 +> Cu2 +。 10分钟的水力停留时间可实现快速检测和0.4 g-NH4 + -N.m-2.d-1的稳态硝化速率,尽管有机负载率很高。此外,还使用了悬浮生长监测仪(Nitritox)作为入口工程毒性检测仪。与仅基于CFBBR的系统相比,将Nitritox与基于CFBBR的下水道监控器结合使用可提供更高的鲁棒性,并且在超过200,000人口当量的流域中显示出是可行的系统。此信息对水务公司很有用,以便他们可以计划和试验不愉快的预警协议。这对制造商也很有用,因为他们可以确定产品性能需求。

著录项

  • 作者

    Black Gary;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号