首页> 外文OA文献 >Variational models and numerical algorithms for effective image registration
【2h】

Variational models and numerical algorithms for effective image registration

机译:有效图像配准的变分模型和数值算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The goal of image registration is to align two or more images of the same scene obtained at different times, from different perspectives, or sensors such as MRI, X-ray and CT. This step is required to facilitate automatic segmentation for tumour detection or to inform further decisions in treatment planning. It is an important and challenging subject which usually involves high storage, computational cost and dealing with distorted and occluded data. The paradigm behind image registration is to find a reasonable transformation so that the template image becomes similar to the so-called given reference image. Through such transformation, information from these images can be compared or combined. This thesis deals with the mathematical modelling of image registration by way of energy minimisation of a functional. We propose a new decomposition model for image registration which combines parametric transformation and non-parametric deformation. The first category of methods is based on a small number of parameters and for the second category the transformation is based on a functional map (or discretely a large number of parameters) with a regularisation term. We choose one cubic B-spline based model and the linear curvature model for the parametric and non-parametric parts respectively where the overall deformation consists of both global and local displacement for effective image registration. Some results for synthetic and real images will be presented to illustrate the effectiveness of the new model in contrast with the individual models. We then propose a novel variational model for image registration which employs Gaussian curvature as a regulariser. The model is motivated by the surface restoration work in geometric processing [21]. An effective numerical solver is provided for the model using an augmented Lagrangian method. Numerical experiments show that the new model outperforms three competing models based on, respectively, the linear curvature [24], the mean curvature [19] and the diffeomorphic demon models [93] in terms of robustness and accuracy. Finally, we present an improved model for joint segmentation and registration based on active contour without edges. The proposed model is motivated by an earlier model [58] and the linear curvature model [24]. Numerical results show that the new model outperforms the existing model for registration and segmentation of one or multiple objects in the image. The proposed model also leads to improved registration results when features exist inside the object.
机译:图像配准的目的是对齐在不同时间从不同角度获得的同一场景的两个或多个图像,或者对准诸如MRI,X射线和CT之类的传感器。需要该步骤以促进用于肿瘤检测的自动分割或告知治疗计划中的进一步决定。这是一个重要且具有挑战性的主题,通常涉及高存储,计算成本以及处理失真和遮挡的数据。图像配准背后的范例是找到合理的变换,以使模板图像变得类似于所谓的给定参考图像。通过这种变换,可以比较或组合来自这些图像的信息。本文通过功能的能量最小化处理图像配准的数学建模。我们提出了一种新的图像配准分解模型,该模型结合了参数转换和非参数变形。方法的第一类基于少量参数,而对于第二类,转换基于具有正则项的功能图(或离散地包含大量参数)。我们分别为参数部分和非参数部分选择一个基于三次B样条的模型和线性曲率模型,其中整体变形包括全局位移和局部位移,以实现有效的图像配准。将给出一些合成图像和真实图像的结果,以说明新模型与单个模型相比的有效性。然后,我们提出了一种新的图像配准变分模型,该模型采用高斯曲率作为正则化器。该模型是由几何处理中的表面修复工作驱动的[21]。使用增强的拉格朗日方法为模型提供了有效的数值求解器。数值实验表明,新模型在鲁棒性和准确性方面分别优于基于线性曲率[24],平均曲率[19]和微分形恶魔模型[93]的三个竞争模型。最后,我们提出了一种改进的模型,该模型基于没有边缘的活动轮廓进行关节分割和配准。所提出的模型是由较早的模型[58]和线性曲率模型[24]驱动的。数值结果表明,新模型优于现有模型中图像中一个或多个对象的配准和分割。当对象内部存在特征时,提出的模型还可以改善配准结果。

著录项

  • 作者

    Ibrahim M;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号