首页> 外文OA文献 >Aspects modulaires et elliptiques des relations entre multizêtas
【2h】

Aspects modulaires et elliptiques des relations entre multizêtas

机译:多折点之间的关系的模块化和椭圆形方面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis deals with the family of numbers called multiple zeta values, and on the relations they satisfy. The first chapter is a general introduction to the field and has the goal of briefly presenting the different settings into which the results of the three other chapters fit, and stating these results. In chapter 2, we study the linear relations between simple and double zeta values, establishing a rigorous connection between these relations, the linear relations between Poisson bracket of depth 1 elements of the free Lie algebra on two generators, and the space of modular forms. The proofs consist mainly in performing elementary linear algebra on explicitly defined matrices. The main result of chapter 3 involves a Lie algebra of derivations derived from the study of the category of mixed elliptic motives introduced by Hain and Matsumoto. We prove the existence of linear relations observed by Pollack in this algebra and which also come from modular forms. The bulk of the proofs rely on applying techniques introduced by Ecalle to the study of the properties of certain non-commutative polynomials. The fourth and last chapter proposes a construction of an elliptic formal multizeta algebra, in analogy with work by Hain and Matsumoto on mixed elliptic motives and Enriquez on elliptic associators. The latter falls within the écallian formalism of moulds, we prove two partial results which support the validity of said construction.
机译:本文讨论了称为多重zeta值的数字族,以及它们满足的关系。第一章是对该领域的一般介绍,其目的是简要介绍其他三章的结果适合的不同设置,并说明这些结果。在第2章中,我们研究了简单zeta值和双zeta值之间的线性关系,在这些关系,两个自由生成器上的自由Lie代数的深度1元素的泊松括号之间的线性关系以及模块形式的空间之间建立了严格的联系。证明主要包括在明确定义的矩阵上执行基本线性代数。第三章的主要结果涉及李恩代数,该李代数源自对海因和松本介绍的混合椭圆动机类别的研究。我们证明了Pollack在该代数中观察到的线性关系的存在,并且也来自模块化形式。大部分证明依赖于Ecalle引入的技术来研究某些非可交换多项式的性质。第四章也是最后一章提出了椭圆形式的多zeta代数的构造,类似于Hain和Matsumoto关于混合椭圆动机的研究和Enriquez关于椭圆缔合者的研究。后者属于模具的écallian形式主义,我们证明了两个部分结果,这些结论支持所述构造的有效性。

著录项

  • 作者

    Baumard Samuel;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号