首页> 外文OA文献 >Freeze out in natural gas systems: Utfrysning i naturgass-systemer
【2h】

Freeze out in natural gas systems: Utfrysning i naturgass-systemer

机译:冻结在天然气系统中:冻结在天然气系统中

摘要

The motivation of the work is to increase the knowledge about thermodynamic modeling of freezeouts in natural gas systems and a deeper understanding of the phase behavior of natural gasmixtures, due to the problems experienced in cryogenic natural gas process-plants. Criticalcomponents in natural gas mixtures introduce a risk of forming a solid coating and plugging theprocess equipment. Hence, it is relevant to examine methane rich binary mixtures containingcomponents with high risk of freezing. Due to their high triple point temperatures, carbon dioxide,benzene and cyclohexane are regarded as the most critical components.The preferred thermodynamic method for modeling the solid fluid system is by describing the fluidphases with a traditionally equation of state in combination with an expression for the solid phasebased on melting and triple point properties. This method is based on the assumption of a purecomponent solid phase, which does not always represent the precipitated substances in natural gassystems. However, it is the situation which represents the highest risk of crystallization at a giventemperature.This study was carried out by applying a simulation tool called NeqSim, where the equation of statemethod is implemented based on the computational algorithms provided by Michelsen andMollerup. To investigate the reliability and accuracy of the equation of state method, it is usedexperimental data from the literature as a foundation and further compared against two existingsimulation tools for freezing point predictions of natural gas mixtures, GPA and HYSYS.The Soave-Redlich-Kwong equation was selected together with classical mixing rules and the use ofbinary interaction parameters. The binary interaction parameters were discovered to be of crucialimportance to the accuracy of the predictions, both for the binary mixtures containing carbondioxide and the heavy hydrocarbons. The model showed promising results for carbon dioxide inmethane rich binary mixtures, after the binary interaction parameter had been optimized. However,the interaction parameter dependency for solid-vapor equilibrium systems was discovered to be lessthan in solid-liquid equilibrium systems. Predictions of freeze outs of heavy hydrocarbons werediscovered to be more challenging, due to numerical problems and a scarce experimental database.One of the main issues concerning the development of reliable thermodynamic models for solid-fluidsystems is the lack of experimental data, which prevents extensive validation of the proposedmodels. The experimental work related to the freeze out rig has mainly involved trouble-shootingand experiments for determining the behavior of the rig. Hence, the experimental focuses were onthe gathering operational experience by running these experiments, and identify the main challengesand the potential areas for improvement. Including a phase study of pure carbon dioxide where thesolid-liquid equilibrium and three-phase point was determined.In order to investigate the binary mixtures of interest, where the composition and the componentexposed to freeze outs is known, the heat loss from the Dewar container and the temperaturedifference between the air bath and the fluid has to be reduced. Hence, the solids will form in thesapphire cell, where the freeze outs can be visually detected. Further, for studying multi-componentmixtures similar to real natural gas mixtures where the composition of the precipitating substance isunknown; a solution for the sampling of the different phases has to be developed, includingextensively testing and validation.
机译:这项工作的动机是要增加有关天然气系统中凝析物的热力学模型的知识,以及由于低温天然气工艺工厂中遇到的问题而对天然气混合物的相行为有更深入的了解。天然气混合物中的关键成分存在形成固体涂层和堵塞工艺设备的风险。因此,研究含高冻结风险组分的富含甲烷的二元混合物很重要。由于它们的高三点温度,二氧化碳,苯和环己烷被认为是最关键的成分。建模固相流体系统的首选热力学方法是通过用传统的状态方程描述流体相并结合方程式来描述固相。固相基于熔点和三点性质。该方法基于纯组分固相的假设,该组分并不总是代表天然气系统中的沉淀物质。然而,在给定温度下,这种情况代表着最高的结晶风险。本研究是通过使用一种名为NeqSim的模拟工具进行的,其中,状态方法的方程式是根据Michelsen和Mollerup提供的计算算法来实现的。为了研究状态方程方法的可靠性和准确性,它以文献中的实验数据为基础,并与两种现有的天然气混合物冰点预测的模拟工具GPA和HYSYS进行了比较.Soave-Redlich-Kwong方程与经典混合规则以及二元相互作用参数的使用一起被选择。对于含二氧化碳和重烃的二元混合物,发现二元相互作用参数对预测的准确性至关重要。在优化了二元相互作用参数后,该模型显示了在富含甲烷的二元混合物中二氧化碳的有希望的结果。然而,发现固-气平衡系统的相互作用参数依赖性小于固-液平衡系统。由于数值问题和缺乏实验数据库,发现重烃冻结的预测更具挑战性。关于开发可靠的固体流体系统热力学模型的主要问题之一是缺乏实验数据,这妨碍了广泛的验证建议的模型。与冻结钻机有关的实验工作主要涉及故障排除和确定钻机性能的实验。因此,实验重点是通过运行这些实验来收集操作经验,并确定主要挑战和潜在的改进领域。包括确定固-液平衡和三相点的纯二氧化碳的阶段研究。为了研究感兴趣的二元混合物(已知其成分和暴露于冰冻的成分),杜瓦容器的热量损失并且必须减小空气浴和流体之间的温度差。因此,固体将在蓝宝石晶胞中形成,在那里可以目视检测出冻结。此外,为了研究类似于真实天然气混合物的多组分混合物,其中沉淀物质的组成未知;必须开发用于不同阶段采样的解决方案,包括广泛的测试和验证。

著录项

  • 作者

    Lavik Vegard Førde;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号