首页> 外文OA文献 >Multi-objective optimization of a nearly zero-energy building based on thermal and visual discomfort minimization using a non-dominated sorting genetic algorithm (NSGA-II)
【2h】

Multi-objective optimization of a nearly zero-energy building based on thermal and visual discomfort minimization using a non-dominated sorting genetic algorithm (NSGA-II)

机译:基于非主导排序遗传算法(NSGA-II)的基于热和视觉不适感最小化的几乎零能耗建筑物的多目标优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multi-objective optimization methods provide a valid support to buildings’ design. They aim at identifyingthe most promising building variants on the basis of diverse and potentially contrasting needs. However,optimization has been mainly used to optimize the energy performance of buildings, giving secondaryimportance to thermal comfort and usually neglecting visual comfort and the indoor air quality.The present study addresses the design of a detached net zero-energy house located in Southern Italyto minimize thermal and visual discomfort. The optimization problem admits four objective functions(thermal discomfort during winter and summer and visual discomfort due to glare and an inappropriatequantity of daylight) and uses the non-dominated sorting genetic algorithm, implemented in the GenOptoptimization engine through the Java genetic algorithms package, to instruct the EnergyPlus simulationengine.The simulation outcome is a four-dimensional solution set. The building variants of the Pareto frontieradopt diverse and non-intuitive design alternatives. To derive good design practices, two-dimensionalprojections of the solution set were also analyzed. Finally, in cases of complex optimization problemswith many objective functions, optimization techniques are recommended to effectively explore the largenumber of available building variants in a relatively short time and, hence, identify viable non-intuitivesolutions.
机译:多目标优化方法为建筑物的设计提供了有效的支持。他们的目的是根据多样化和潜在的对比需求确定最有前途的建筑变型。然而,优化主要用于优化建筑物的能源性能,其次要重点是热舒适性,而通常忽略了视觉舒适性和室内空气质量。本研究针对位于意大利南部的独立净零能耗房屋的设计热和视觉不适。优化问题考虑了四个目标函数(冬季和夏季的热不适以及由于眩光和日光量不合适引起的视觉不适),并使用通过Java遗传算法包在GenOptoptimization引擎中实现的非主导排序遗传算法进行指令仿真结果是一个二维解决方案集。帕累托前沿的建筑变体采用了多种非直观的设计选择。为了得出良好的设计规范,还分析了解决方案集的二维投影。最后,在具有许多目标函数的复杂优化问题的情况下,建议使用优化技术以在相对较短的时间内有效地探索大量可用的建筑物变体,从而确定可行的非直观解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号