首页> 外文OA文献 >Exploration of Micro-Doppler Signatures Associated with Humans and Dogs using UWB Radar
【2h】

Exploration of Micro-Doppler Signatures Associated with Humans and Dogs using UWB Radar

机译:利用UWB雷达探索与人和狗相关的微多普勒签名

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The work in this thesis has been a part of the task of using a radar to separate between humans and animals in a alarm and surveillance context. For the radar to be able to separate between humans and animals it would use a classifier that rely on features extracted from the radar data. The thesis considers two types of targets; either a human or a dog, and by using micro-Doppler signature, determines some fundamen- tal features which can be the used to classify them. The micro-Doppler signature is the superposition of frequency modulations represented in the joint time and Doppler frequency domain, where the modulations are caused by dierent moving components associated with the desired target. The micro-Doppler signature has been widely used for radar classification.The thesis has succeeded in developing algorithms and a system to extract micro- Doppler signatures from targets. Signatures from both humans and dogs has been produced and some simple features extracted from them. The major problem with the signatures created is that the radars pulse repetition frequency is a limiting factor and causes aliasing in the Doppler spectrum that corrupts the signatures. This has limited the study of targets to slow moving humans and dogs.Three important features for classification was extracted from the micro-Doppler signature by calculating the gait-Doppler map. They are, i) the average Doppler fre- quency fav(or average radial velocity vav), ii) fundamental gait frequency fg and iii) the stride length Ls which is derived from the two former features.The result points towards the possibility to separate humans and dogs using these parameters. The reason is that since the dogs limbs are shorter than a human it also has shorter stride length at a specific speed. However, this may not be sucient for decisions to be made in a robust alarm system, since it can be fooled by a smart intruder that could for example take unnatural short steps and simulate a dogs combination of the aforementioned features.In addition the determination of features are sensitive to large changes in radial speed. This can be mitigated by preprossing before the calculation of the features.The conclusion is, that based on substantial measurements of signatures ( approx. 50 series) and calculations of the three features one has arrived at a fairly robust method to distinguish between the two type of target in this thesis.
机译:本文的工作是在预警和监视环境中使用雷达在人与动物之间分离的任务的一部分。为了使雷达能够在人与动物之间分离,可以使用分类器,该分类器依赖于从雷达数据中提取的特征。本文考虑了两种类型的目标:无论是人还是狗,都可以通过使用微多普勒签名确定一些基本特征,这些特征可以用来对它们进行分类。微多普勒签名是在联合时域和多普勒频域中表示的频率调制的叠加,其中调制是由与所需目标相关的运动分量引起的。微多普勒签名已被广泛用于雷达分类。论文成功地开发了从目标提取微多普勒签名的算法和系统。已经产生了人和狗的签名,并从中提取了一些简单的特征。创建的签名的主要问题是雷达脉冲重复频率是一个限制因素,并会导致多普勒频谱中的混叠现象,从而破坏签名。这限制了对慢速运动的人和狗的目标的研究。通过计算步态-多普勒图谱,从微多普勒签名中提取了三个重要的分类特征。它们是:i)平均多普勒频率fav(或平均径向速度vav); ii)基本步态频率fg; iii)步长Ls,这是从前两个特征得出的。结果指出了分离的可能性人和狗使用这些参数。原因是由于狗的肢体比人的短,因此在特定速度下步幅也较短。但是,这可能不足以在健壮的警报系统中做出决定,因为它可能会被智能入侵者所欺骗,例如可以采取不自然的短步并模拟上述特征的狗的组合。特征对径向速度的大变化很敏感。可以通过在特征计算之前进行预修复来缓解这种情况。结论是,基于对特征的大量测量(大约50个序列)和三个特征的计算,一个得出了一种相当可靠的方法来区分这两种类型本文的目标。

著录项

  • 作者

    Fossum Thor Øyvind;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号