首页> 外文OA文献 >Propulsion methods for under water snake robots - Investigation and simulation using foil for propulsion of a snake robot
【2h】

Propulsion methods for under water snake robots - Investigation and simulation using foil for propulsion of a snake robot

机译:水下蛇机器人的推进方法-用箔推动蛇机器人的研究和仿真

摘要

In this thesis we present a model of a swimming underwater snake robot. How aquatic animals move in water has fascinated people for decades. NTNU started the research on land based snake robots 11 years ago. The last years also underwater snake robots has become a topic. This thesis is based on this research.In this study an extension of the underwater snake model moving in a 2D plane presented in [1] is derived. The new model makes it possible to include an extra propulsion force in each link. In the new model each link can also have different mass, length and inertia. The new model is implemented in Matlab R2014b. The simulations show that the new model gives the same answers as the one proposed in [1].Further more a quasi-steady model for a oscillating and rotating foil are combined on the new extended underwater snake robot model to simulate a snake with a high aspect ratio caudal fin. Simulation with and without the caudal fin are presented. Results show an increase in speed for both eel and snake like motion. More simulations for the eel-like motion were carried out. This shows a significantly reduction in the work per meter for the underwater snake robot with tail at the same forward velocities. The results also shows that the use of a quasi-steady foil model acceptable. The KC numbers are plotted for 3 different links for the eel motion with caudal fin. This shows a significantly difference in the KC number which motivates for the investigation of using different drag coefficients for the different links. The effect of a dorsal fin is also investigated. The simulations were done with a caudal fin and a dorsal fin at the fifth link. The results show a decrease of work per meter and an increase of the efficiency for the same simulation parameters. The sideways motion of the center of mass was slightly damp due to the dorsal fin.The complexity of underwater snake robots makes it challenging to model and there are still a lot of work to be done. Making a maneuvering and transit controller for the underwater snake robot and prove stability is something too continues with. Future control of the tail and angel for attack and optimization of the movements is also necessary. The interaction effects between the snake, caudal fin and dorsal fin could also increase the efficiency for the robot.
机译:在本文中,我们提出了一种游泳水下蛇机器人的模型。几十年来,水生动物如何在水中运动一直着迷于人们。 NTNU于11年前开始研究陆基蛇形机器人。最近几年,水下蛇机器人也成为一个话题。本文是基于这项研究而得出的。在本研究中,得出了在[1]中提出的在二维平面上运动的水下蛇模型的扩展。新模型可以在每个链节中包括一个额外的推进力。在新模型中,每个链接也可以具有不同的质量,长度和惯性。新模型在Matlab R2014b中实现。仿真结果表明,新模型与[1]中提出的模型具有相同的答案。此外,在新的扩展水下蛇机器人模型上结合了用于振荡和旋转箔片的准稳态模型,以模拟高蛇长宽比尾鳍。提出了带有或不带有尾鳍的仿真。结果表明,鳗鱼和蛇状运动的速度都有所提高。对类似鳗鱼的运动进行了更多的模拟。这表明在相同的前进速度下具有尾部的水下蛇形机器人的每米工作量显着降低。结果还表明,使用准稳定箔模型是可以接受的。绘制了三个不同环节的KC值,以进行带尾鳍的鳗鱼运动。这表明KC数存在显着差异,这有助于研究对不同链接使用不同的阻力系数。还研究了背鳍的影响。在第五个环节使用尾鳍和背鳍进行了仿真。结果表明,在相同的模拟参数下,每米工作量减少,效率提高。由于背鳍,质心的侧向运动略微受潮。水下蛇形机器人的复杂性使其难以建模,并且仍有大量工作要做。为水下蛇形机器人制造机动和运输控制器并证明其稳定性也是一件持续的事情。未来还需要控制尾巴和天使以进行攻击和优化动作。蛇,尾鳍和背鳍之间的相互作用也可以提高机器人的效率。

著录项

  • 作者

    Strømsøyen Simen;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号