首页> 外文OA文献 >Development and evaluation of prediction equations for NIR instrument, measuring fat in Atlantic Salmon (salmno salar ) fillets, using multivariate methods.
【2h】

Development and evaluation of prediction equations for NIR instrument, measuring fat in Atlantic Salmon (salmno salar ) fillets, using multivariate methods.

机译:NIR仪器的预测方程的开发和评估,该方法使用多元方法来测量大西洋鲑鱼(salmo salar)鱼片中的脂肪。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Knowledge of fat in salmon is extremely important to salmon breeder and the whole salmon industry. By monitoring fat in salmon fillet, huge amount of money will be saved. Several methods are available to determine fat in salmon fillets. Stofnfiskur Iceland decided to buy the NIR instrument Qmonitor which was installed in there slaughter line. When applying existing prediction model to results obtained by Qmonitor the prediction of fat was wrong. Aim of this thesis is to develop a new valid prediction model which will be applied to results obtained by the NIR instrument Qmonitor when measuring fish from all families in the nucleus of Stofnfiskur for breeding purposes. This thesis will provide background of NIR, breeding and problems of modeling fat in salmon fillet. Main goal is to discuss methods needed to explore the data, develop prediction model and validate the prediction model obtained. Use of recently developed CPLS will then be introduced in order to reduce the prediction error of existing methodology when creating prediction model. All methods will be compared and there qualities and drawback discussed. Three datasets are presented in the thesis were two of them where made for this thesis and one comes from paper defining methods used when modeling QMonitor data.In the paper where the method of picking out five $14$ mm plugs from the fillet to capture the variation of fat in the fillet a RMSEP value reported was $1.96$. By using Canonical Partial Least Squares with the additional response a location of the plug, the RMSEP of the same dataset was $1.75$. On the dataset made for this thesis to develope prediction model for the QMonitor in Iceland CPLS had the best performance obtaining RMSEP value of $1.8$. Additional values which improved the prediction model where additional information about the plugs such as thickness of the plug, moisture in the plug and weight of the plug.
机译:鲑鱼中的脂肪知识对于鲑鱼育种者和整个鲑鱼产业极为重要。通过监控鲑鱼片中的脂肪,可以节省大量资金。有几种方法可以确定鲑鱼片中的脂肪。冰岛Stofnfiskur决定购买安装在该屠宰线上的NIR仪器Qmonitor。将现有的预测模型应用于Qmonitor获得的结果时,脂肪的预测是错误的。本文的目的是开发一种新的有效的预测模型,该模型将被用于近红外仪器Qmonitor在测量Stofnfiskur核中所有科目的鱼类进行繁殖时获得的结果。本文将为鲑鱼片的近红外光谱,育种和脂肪建模问题提供背景知识。主要目标是讨论探索数据,开发预测模型和验证获得的预测模型所需的方法。然后将引入最近开发的CPLS的使用,以减少创建预测模型时现有方法的预测误差。将比较所有方法,并讨论其质量和缺点。本文提出了三个数据集,其中两个用于本论文,一个来自纸张定义方法,用于对QMonitor数据进行建模。在本文中,该方法从圆角中挑出五个$ 14 $ mm塞子以捕获变化在圆角中的脂肪,RMSEP值报告为$ 1.96 $。通过将Canonical Partial Least Squares与附加响应一起用于插头的位置,同一数据集的RMSEP为$ 1.75 $。在为本文开发的QMonitor冰岛预测模型的数据集上,CPLS具有RMSEP值为$ 1.8 $的最佳性能。附加值改善了预测模型,在该预测模型中,有关塞的其他信息(例如塞的厚度,塞中的水分和塞的重量)。

著录项

  • 作者

    Kristjánsson Ólafur;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号