首页> 外文OA文献 >Predicting scour around offshore wind turbines using soft computing techniques - Comparing Genetic Programming with Existing Scour Prediction Methods.
【2h】

Predicting scour around offshore wind turbines using soft computing techniques - Comparing Genetic Programming with Existing Scour Prediction Methods.

机译:使用软计算技术预测海上风力涡轮机周围的冲刷-将遗传编程与现有冲刷预测方法进行比较。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this report a prediction method is developed for scour around monopiles. A soft computing technique called genetic programming (GP) is used to create a scour prediction formula that can compute scour in all offshore conditions, meaning current-induced, wave-induced and combined current- and wave-induced scour. The GP was trained with an extensive database of laboratory scour measurements from multiple sources, to ensure that a wide range of conditions was represented. Furthermore, only dimensionless parameters were used to create a formula that is also applicable for field tests. The formulas where analyzed both on their mathematical and physical behavior and it was concluded that they could accurately predict scour in all conditions. The new scour prediction method was compared to various existing scour prediction methods and it was seen that the formula created in this study predicted more accurate scour depths, especially for test with larger scour depths. The study was finalized with a comparison to a second soft computing method: the neural network. It was found that the GP is less successful in predicting the scour depth compared to the NN. However, the high accuracy of the NN could not have been achieved without the knowledge of the parameter behavior obtained by the GP.
机译:在本报告中,开发了一种预测单桩周围冲刷的方法。使用一种称为遗传编程(GP)的软计算技术来创建冲刷预测公式,该公式可以计算所有海上条件下的冲刷量,这意味着电流感应冲刷,波浪感应冲刷以及电流和波浪感应冲刷的组合。 GP接受了来自多个来源的实验室冲刷测量数据的广泛数据库的培训,以确保代表各种条件。此外,仅使用无量纲参数创建公式,该公式也适用于现场测试。分析了这些公式的数学和物理行为,得出的结论是,它们可以准确预测所有情况下的冲刷。将新的冲刷预测方法与各种现有的冲刷预测方法进行了比较,可以看出,本研究中创建的公式预测了更精确的冲刷深度,特别是对于更大冲刷深度的测试。通过与第二种软计算方法(神经网络)的比较,最终完成了该研究。已经发现,与NN相比,GP在预测冲刷深度方面不太成功。但是,如果不知道GP获得的参数行为,就无法实现NN的高精度。

著录项

  • 作者

    Centen Irma Hetty;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号