首页> 外文OA文献 >Probabilistic estimation of fatigue loads on monopile-based offshore wind turbines - Application to sensitivity assessment clustering optimization for support structure cost reduction
【2h】

Probabilistic estimation of fatigue loads on monopile-based offshore wind turbines - Application to sensitivity assessment clustering optimization for support structure cost reduction

机译:基于单桩的海上风力发电机疲劳载荷的概率估计-在灵敏度评估和聚类优化中用于降低支撑结构成本的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Offshore wind energy faces three important trends: (1) wind farms grow in size, (2) monopiles are installed in deeper water, and (3) cost reduction remains the most important challenge. With wind farm size, the importance of variations in environmental site conditions across the wind farm increases. These site variations, e.g. water depth and soil conditions, can lead to significant differences of loads on support structures. For monopiles in deeper water, design is dominated by wave-induced fatigue loads. Since full fatigue load calculations are computationally demanding, they can typically not be performed for each turbine within large wind farms. Therefore, turbines must be grouped into clusters in early project phases, making time-efficient approaches essential. Optimization of design clustering is necessary to reduce design conservatism and the cost of offshore wind energy.Hence, the goal of this thesis is to investigate load site variations and clustering. Therefore, a probabilistic fatigue load estimation method is developed and verified with aero-elastic simulations in the time domain. Subsequently, the developed method is applied for an exemplary wind farm of 150 turbines in 30-40m water depth to perform(1) sensitivity studies of loads to changes in MSL, soil stiffness, and wave parameters,(2) probabilistic assessments of data, statistical and model uncertainties, and(3) deterministic and probabilistic design clustering.The estimation method is based on frequency domain analysis to calculate wave-induced fatigue loads, a scaling approach for wind loads, combination of wind-wave loads with quadratic superposition, and Monte-Carlo simulations to assess uncertainties. Verification confirms an accuracy of 95% for lifetime equivalent fatigue loads compared to time domain simulations. The computational speed is in the order of 100 times faster than typical time domain tools. Sensitivity studies show a significant influence of water depth and wave period on EFLs. The influence of soil on EFLs is minor for high soil stiffness but can increase significant for soils with low stiffness. Normal distributed input parameters in a probabilistic assessment yield a positively skewed probability distribution of EFLs.Design clustering is optimized based on site-specific fatigue loads using brute-force and discrete optimization algorithms. Results for the exemplary wind farm show a design load reduction of up to 13% compared to standardized design. Probabilistic clustering proved to be only relevant at cluster borders leading to a difference in allocation for 12 out of 150 turbines.Project results show that it is essential to account for load differences in large wind farms due to varying site conditions. This study improves clustering and provides a basis for design optimization and uncertainty analysis in large wind farms. Further work is needed to extend tool verification and formulate design clustering for cost optimization.
机译:海上风能面临着三个重要趋势:(1)风电场规模不断扩大;(2)单桩被安装在更深的水中;(3)降低成本仍然是最重要的挑战。随着风电场规模的扩大,整个风电场环境现场条件变化的重要性日益提高。这些网站的变化,例如水深和土壤条件会导致支撑结构上的荷载差异很大。对于更深水中的单桩,设计主要是波浪引起的疲劳载荷。由于要进行完整的疲劳载荷计算需要大量计算,因此通常无法对大型风电场中的每个涡轮进行计算。因此,在项目的早期阶段,必须将涡轮机分组为一组,从而使时间高效的方法必不可少。设计聚类的优化对于降低设计的保守性和降低海上风能的成本是必要的。因此,本论文的目的是研究负荷点的变化和聚类。因此,提出了一种概率疲劳载荷估计方法,并在时域中通过气动弹性仿真进行了验证。随后,将开发的方法应用于水深30-40m的150个涡轮机的示例性风电场,以执行(1)载荷对MSL,土壤刚度和波浪参数变化的敏感性研究,(2)数据的概率评估,统计和模型不确定性,以及(3)确定性和概率设计聚类。估计方法基于频域分析,以计算波浪引起的疲劳载荷,风载荷的缩放方法,风浪载荷与二次叠加的组合,以及蒙特卡洛模拟评估不确定性。验证证实,与时域仿真相比,寿命等效疲劳载荷的准确性为95%。计算速度比典型的时域工具快100倍。敏感性研究表明,水深和波浪周期对EFL具有重大影响。对于较高的土壤刚度,土壤对EFL的影响较小,而对于较低硬度的土壤,影响可能会明显增加。概率评估中的正态分布输入参数会产生EFL的正偏概率分布。设计聚类基于特定地点的疲劳载荷,使用蛮力和离散优化算法进行了优化。示例性风电场的结果表明,与标准设计相比,设计负荷降低了13%。事实证明,概率聚类仅在聚类边界相关,从而导致150台风机中有12台的分配有所不同。项目结果表明,必须考虑到由于场地条件的变化而导致的大型风电场负荷差异。该研究改善了聚类,并为大型风电场的设计优化和不确定性分析提供了基础。需要进一步的工作来扩展工具验证并制定设计集群以优化成本。

著录项

  • 作者

    Ziegler Lisa Sabine;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号